Excess Dietary Methionine Markedly Increases the Vitamin B-6 Requirement of Young Chicks

Colleen S. Scherer and David H. Baker
Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801

ABSTRACT A soy-protein isolate diet that contained essentially no bioavailable vitamin B-6 was used to establish the quantitative effect of excess dietary methionine on the vitamin B-6 requirement of young chicks. When made adequate in vitamin B-6, chicks fed the basal diet required 2 g/kg supplemental \(\alpha \)-methionine to achieve maximal growth, and 10 g/kg additional \(\alpha \)-methionine (total = 12 g/kg) was found to be a tolerable excess level that would not depress voluntary food intake or growth rate. When chicks were fed seven graded doses of supplemental pyridoxine (PN) in diets that contained either adequate (2 g/kg) or excess (12 g/kg) methionine, the vitamin B-6 requirement for maximal growth was found to increase \((P < 0.01)\) from 0.73 to 1.05 mg/kg, a 44% increase, when 10 g/kg excess methionine was present in the diet. Indeed, this level of excess dietary methionine depressed \((P < 0.01)\) growth at all PN dose levels \(\leq 1\) mg/kg, but not at PN doses of 1.2 or 1.4 mg/kg. Because dietary intakes of both vitamin B-6 and methionine can affect plasma homocysteine levels, dietary methionine (and protein) intake should be considered important factors in setting safe and adequate requirement levels for vitamin B-6. J. Nutr. 130: 3055–3058, 2000.

KEY WORDS: vitamin B-6 • methionine • protein • chicks • requirements

Excess intake of protein exacerbates vitamin B-6 deficiency (Bai et al. 1991, Bender 1985, Canham et al. 1969, Driskell 1984, Leklem 1991, Morgan et al. 1946). The chick studies of Daghiri and Shah (1973) and Gries and Scott (1972), together with the rat study of Okada et al. (1998), also provided qualitative evidence that excess protein increases the dietary requirement for vitamin B-6. Our recent chick work (Scherer and Baker 2000) demonstrated that doubling the protein level from 200 to 400 g/kg, using methionine (Met)-fortified soy-protein isolate, increased the vitamin B-6 requirement for maximal growth by 45%. We questioned whether this effect was due to protein (or excess amino acids) per se, or whether there might be a single amino acid, e.g., Met, that might be causing most of the effect.

Vitamin B-6 (as pyridoxal phosphate (PLP)), is intimately involved in sulfur amino acid (SAA) metabolism. In the transsulfuration pathway, homocysteine (+ serine) conversion to cystathionine, and cystathionine conversion to cysteine, \(\alpha \)-ketobutyrate and ammonia require PLP. Of the homocysteine produced from Met catabolism in mammals, an estimated 50% is remethylated to Met, and roughly half of the homocysteine remethylation that occurs uses 5-methyltetrahydrofolate as a methyl donor (Finkelstein 1990). The biosynthesis of serine, with its subsequent conversion to glycine, generates a methyl group, and this PLP-requiring reaction is an important contributor to the folate pool for use in remethylating homocysteine to Met (Martinez et al. 2000). Thus, in the overall process of transsulfuration, there are three key PLP-requiring reactions. In addition, several S-adenosylmethionine–requiring reactions also require PLP as a cofactor, e.g., the conversion of ornithine to putrescine, putrescine to spermidine and spermidine to spermine. Moreover, one of the pathways in cysteine catabolism involves transamination, which is a PLP-dependent reaction.

Because vitamin B-6 status can affect the level of both homocysteine (Leklem 1991, Martinez et al. 2000, Rassin et al. 1977, Ubbink et al. 1996, Wilcken and Wilcken 1998) and cystathionine (Andersson et al. 1990, Leklem 1990, Linkswiler 1981) in blood and urine, we attempted herein to use the chick as a model for purposes of determining whether excess dietary Met per se might increase the dietary need for vitamin B-6. In a quantitative study involving both vitamin B-6 and Met, the chick is a very useful animal model in that transsulfuration in avian species is similar to that in mammals (Emmert et al. 1996). Moreover, chicks, unlike rats, do not practice coprophagy, a factor that could confound interactive results of a vitamin B-6 dosing study.

It is well documented that an elevation in the circulating level of homocysteine represents an independent risk factor for cardiovascular disease in humans (Wilcken and Wilcken 1998). Thus, if excess Met ingestion caused by high protein diets were to exacerbate vitamin B-6 deficiency, also a factor that causes homocysteinemia (Martinez et al. 2000, Miller et al. 1994, Selhub et al. 1998, Smolin and Benevenga 1984), a high protein or high Met diets might appropriately be added to the growing list of factors that contribute to cardiovascular disease.

MATERIALS AND METHODS

General procedures. All procedures were approved by the University of Illinois Committee on Laboratory Animal Care.

1 To whom correspondence should be addressed.

2 Abbreviations used: PLP, pyridoxal phosphate; PN, pyridoxine; SAA, sulfur amino acids.
Two bioassays were conducted with male chicks from the cross of New Hampshire males and Columbian females (University of Illinois Poultry Farm, Urbana, IL). Chicks were housed in thermostatically controlled battery pens equipped with raised wire floors in an environmentally controlled laboratory room with 24-h continuous fluorescent lighting. All equipment, including batteries, feeders, water trays and feed mixing equipment, was of stainless steel construction. Water and experimental diets were freely available, and diets were formulated to meet or exceed NRC (1994) requirements for all essential nutrients with the exception of vitamin B-6. Chicks were fed a conventional 24% crude protein diet during the first 7 d posthatching. On the morning of d 8 posthatch, after 16 h without either feed or water, the chicks were wingbanded, weighed and then assigned to battery pens in a manner that ensured minimal variation in initial body weight among pens. The two experiments involved four pens of four chicks for each diet during a 12-d experimental feeding period of 8–20 d posthatching.

Basal diet. The basal soy-protein isolate diet (Table 1) was developed and characterized over several years for purposes of studying utilization of several nutrients (Baker et al. 1999, Emmert and Baker 1995 and 1997, Patel and Baker 1996). The soy-protein isolate product used was a functional alcohol-extracted soy product (Ardex Baker 1995 and 1997, Patel and Baker 1996). The soy-protein isolate developed and characterized over several years for purposes of study was used to prepare the basal diet. A commercial soy-protein isolate containing a superadequate level of pyridoxine (PN) (Macromichals and Baker 2000, Scherer and Baker 2000, Yen et al. 1976) was also added to the basal diet (Table 1) at a level of 5 mg/kg as established previously (Emmert and Baker 1995, Scherer and Baker 2000).

Composition of pyridoxine-deficient soy-protein isolate basal diet.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soy-protein isolate (82.4% protein)</td>
<td>243.0</td>
</tr>
<tr>
<td>Cornstarch</td>
<td>319.8</td>
</tr>
<tr>
<td>Sucrose</td>
<td>321.5</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>50.0</td>
</tr>
<tr>
<td>Mineral mix3</td>
<td>53.7</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>5.0</td>
</tr>
<tr>
<td>Vitamin mix (pyridoxine-free)4</td>
<td>2.0</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>2.0</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>2.0</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>1.0</td>
</tr>
<tr>
<td>DL-α-Tocopheryl acetate (20 mg/kg)</td>
<td>+</td>
</tr>
<tr>
<td>Ethoxyquin (125 mg/kg)</td>
<td>+</td>
</tr>
</tbody>
</table>

1 The basal diet contained 200 g/kg protein, 4.6 g/kg Met, 2.6 g/kg cystine and was essentially devoid of bioavailable vitamin B-6 (Baker et al. 1999, Emmert and Baker 1995).

2 Functional soy-protein isolate (ADM, Decatur, IL).

3 Mineral mix provided (per kilogram of diet): CaCO3, 3 g; Ca3(PO4)2, 28 g; K2HPO4, 9 g; NaCl, 8.8 g; MgSO4 - 7H2O, 3.5 g; ZnO, 0.1 g; FeSO4 - 7H2O, 0.415 g; MnSO4 - H2O, 0.65 g; CuSO4 - 5H2O, 0.20 mg; H3BO3, 9 mg; Na2MoO4 - 2H2O, 9 mg; KI, 40 mg; CoSO4 - 7H2O, 1 mg; Na2SeO3, 0.215 mg.

4 Vitamin mixture provided (per kilogram of diet): thiamin - HCl, 20 mg; niacin, 50 mg; riboflavin, 10 mg; d-Ca-pantothenate, 30 mg; vitamin B-12, 120 μg; folic acid, 4 mg; menadione dimethylpyrimidinol bisulfite, 2 mg; ascorbic acid, 250 mg; cholecalciferol, 15 μg; retinyl acetate, 1759 μg.

RESULTS AND DISCUSSION

The results of Experiment 1 (Table 2) clearly established that 10 g/kg of supplemental DL-Met represented a tolerable excess level of Met.

Table 2: Growth performance of chicks fed graded levels of excess supplemental methionine (Experiment 1)1

<table>
<thead>
<tr>
<th>Diet</th>
<th>Weight gain2</th>
<th>Food intake2</th>
<th>Gain:food2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal diet (B)3</td>
<td>161</td>
<td>187</td>
<td>860</td>
</tr>
<tr>
<td>B + 10 g/kg DL-Met</td>
<td>163</td>
<td>185</td>
<td>880</td>
</tr>
<tr>
<td>B + 20 g/kg DL-Met</td>
<td>67</td>
<td>112</td>
<td>599</td>
</tr>
<tr>
<td>B + 30 g/kg DL-Met</td>
<td>13</td>
<td>70</td>
<td>187</td>
</tr>
<tr>
<td>SEM</td>
<td>5</td>
<td>13</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Data are mean values of four pens of four male chicks during a 12-d experimental feeding period; average initial body weight was 99 g.

2 Quadratic (P < 0.01) decrease.

3 The basal diet (Table 1) contained adequate levels of supplemental DL-Met (2 g/kg) and pyridoxine (5 mg/kg) as established previously (Emmert and Baker 1995, Scherer and Baker 2000).

that 2 g/kg of supplemental DL-Met would meet the minimal level of SAA required for maximal growth of chicks fed the basal diet containing a superadequate level (5 mg/kg) of pyridoxine (PN) (Macromichals and Baker 2000, Scherer and Baker 2000, Yen et al. 1976).

Dietary additions of PN · HCl and α-Met were made at the expense of cornstarch. Because milligram quantities of PN · HCl were involved in the construction of individual diets, PN additions were accomplished by first dissolving PN · HCl in deionized water (1 PN/L), after which appropriate quantities of this solution were pipetted, premixed, screened and then added to the individual diets.

Experiment 1. Graded levels of excess supplemental α-Met were added to the basal diet made superadequate in vitamin B-6 (5 mg/kg supplemental PN) to determine a level of excess Met that could be tolerated without causing a growth depression. Previous results from our laboratory had shown that 10 g/kg of excess DL-Met added to a conventional corn-soybean meal diet would not depress either weight gain or food efficiency (Han and Baker 1993). Thus, 10, 20 or 30 g/kg of added DL-Met were tested in the soy-protein isolate semipurified diet to establish whether a 10 g/kg DL-Met supplement would similarly be a tolerable excess in this diet.

Experiment 2. A 2 × 7 factorial arrangement of treatments was used in this bioassay, involving two levels of supplemental DL-Met added to the Met-adequate basal diet (none, i.e., adequate, and 10 g/kg, i.e., excess) and seven graded doses of PN ranging from 0.20 to 1.4 mg/kg. Our previous work with PN additions to the basal diet shown in Table 1 indicated that these dosage levels of PN would cover both the linear and plateau portions of the growth-response curve. The objective of the bioassay was to determine whether excess Met might depress growth at deficient but not at adequate levels of vitamin B-6, and also to define dietary requirements for vitamin B-6, under conditions of adequate and excess dietary Met.

Statistical analyses. Both experiments were completely randomized designs. After ANOVA of pen means data, orthogonal single df comparisons were made to evaluate treatment differences (Steel and Torrie 1980). Linear and quadratic responses to excess Met were evaluated in Experiment 1, and Met and PN (linear and quadratic) main effects and their interaction were determined in Experiment 2. The weight gain data in Experiment 2 were also fitted to a one-slope broken-line model (Robbins et al. 1979, Robbins and Bateman 1986) in which gain was regressed on dietary PN level for chicks fed either an adequate or an excess level of Met.

1 Like rats, mice and pigs, avian species use the α-isomer of Met almost as efficiently as the L-isomer (Baker 1994).
Martinez et al. (2000) found that excess Met contained in excess protein may be more important than the need for PLP in the cystathionine β-synthase reaction. Indeed, Sato et al. (1996) showed that vitamin B-6 deficiency in rats increases the proportion of hepatic γ-cystathionase in apoenzyme form, and also increases the catabolism of the enzyme. We did not measure plasma homocysteine in our chicks, but deficiencies of vitamin B-6 are known to elevate plasma homocysteine (Martinez et al. 2000, Miller et al. 1994, Selhub et al. 1993, Smolin and Benevenga 1984). Miller et al. (1994) also found that Methionine in excess chicks feeding in cats that causes this effect. Most amino acids require PLP in their catabolism, but Met catabolism requires PLP in several steps. Also, Met is well established as being among the most toxic of all amino acids when fed at excess levels in a diet (Edmonds and Baker 1987, Edmonds et al. 1987).

LITERATURE CITED

Robbins, K. R. (1986) A method, SAS program, and example for fitting the broken line to growth data. University of Tennessee Agricultural Experimental Station, Knoxville, TN.

