A stable, nonsense mutation associated with a case of infantile onset polycystic kidney disease 1 (PKD1)

Bélén Peral1, Albert C. M. Ong1, José L. San Millán1,†, Vicki Gamble1, Lesley Rees2 and Peter C. Harris1,*

1MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK and 2Department of Paediatric Nephrology, Royal Free Hospital, London NW3 2QG, UK

Received January 16, 1996; Revised and Accepted February 2, 1996

Autosomal dominant polycystic kidney disease (ADPKD) is the most common single gene disorder resulting in renal failure. It is generally an adult onset disease, but rarely, cases of severe childhood polycystic disease arise in ADPKD families. The clear clinical anticipation in these pedigrees has led to the suggestion that the mutation may be an unstable trinucleotide repeat. We have now identified a nonsense mutation, Tyr3818Stop, in one such family (P117) within the peat. We have now identified a nonsense mutation, that the mutation may be an unstable trinucleotide repeat in these pedigrees has led to the suggestion of severe childhood polycystic disease arising in ADPKD families. The clear clinical anticipation in families (11,12). Fick et al. (13) argued that the intrafamilial variability showed a pattern of anticipation in the majority of families studied. An extreme example of this phenotypic variability is manifest in rare, childhood cases of ADPKD. In its most severe form, ADPKD can present as massively enlarged bilateral polycystic kidneys detected in utero (14–18). Studies of early onset cases have shown that they arise in families with normal, adult presenting disease, although a significant risk of recurrent childhood disease in sibs has been noted (15–17). A maternal predominance of the transmitting parent has also been observed (16,17), and a high proportion of apparent new mutations within these families (17). In the limited number of families where linkage analysis has been described, all childhood cases are in PKD1 pedigrees (18). The clear clinical anticipation in families containing early onset cases, plus the evidence for anticipation in typical ADPKD families, has led to the proposal that an unstable trinucleotide repeat may be the mechanism of disease (13,16).

Recently the PKD1 gene has been identified (19) and fully sequenced (20–22); analysis has, however, shown no trinucleotide repeats larger than five copies in the genomic region encoding PKD1 (20). Furthermore, the mutations so far described in typical PKD1 families are various stable, frame-shifting, nonsense or deletional changes in the PKD1 gene (23,24). The basis of disease has been determined in one group of patients with early onset PKD1, but which also manifest tuberous sclerosis. In these cases, deletions of the PKD1 and adjacent tuberous sclerosis gene, TSC2, have been characterised (25). Nevertheless, the basis of severe childhood PKD in typical ADPKD families remains unclear.

Here we describe a nonsense mutation in the PKD1 gene in a severely affected child which was also found in her clinically normal twin brother and father who have typical adult onset disease.

*To whom correspondence should be addressed
†Present address: Unidad de Genética Molecular, Hospital Ramón y Cajal, 28034 Madrid, Spain
RESULTS

Clinical details

Dizygotic twins (III1 and 2; Fig. 1) were born at 34 weeks gestation to a 26 year old mother (II2) from family P117. Enlarged bilateral polycystic kidneys were diagnosed by ultrasound in II2 at 31 weeks gestation: III1 remained normal throughout the pregnancy. At birth, both kidneys of II2 were easily palpable and renal cysts were detectable by ultrasound: on measurement at 10 months bilateral enlarged polycystic kidneys of 8 cm were observed (>95th centile). In the absence of a family history of PKD, autosomal recessive polycystic kidney disease (ARPKD) was initially diagnosed. However, this was revised when bilateral, multiple renal cysts were detected in the father (28 years) on ultrasound. He was asymptomatic and had normal renal size and function. The mother showed no evidence of PKD clinically or on ultrasound and all six siblings of the father were well; two showed no renal cysts on ultrasound at 35 and 33 years. The grandparents (I1 and 2) are well, except for mild treated hypertension in the grandmother who had normal renal function and ultrasound. The grandfather refused ultrasound examination but had normal renal function at 55 years. II2 is now 6 years of age, her kidneys continue to be enlarged (>95th centile), with multiple cysts (Fig. 2) and has been hypertensive since age 2; her renal function remains normal. III1 continued to show no renal cysts on ultrasound examination when analysed at 5 years of age.

Molecular analysis

The PKD1 transcript of II2 was analysed for mutations by SSCP and an abnormal fragment was detected with the primers NN (24). Direct sequencing showed a C to A transversion at and an abnormal fragment was detected with the primers NN nucleotide 11665 in exon 41 (Fig. 3), changing the Tyr3818 codon TAC, to a stop codon, resulting in truncation of the protein by 485 positions of the mutation, in the 3′ region of the gene, is similar to that seen in some other families with adult onset PKD1 (24). The inheritance of the same, stable, DNA change in individuals with such different disease manifestations indicates that the phenotypic variability observed in PKD1 is not due to a dynamic mutation within the PKD1 gene. Interestingly, a recent study of 74 German ADPKD families casts doubt on anticipation in ADPKD (12). Geberth et al. (12) found similar results to Fick et al. (13), that is, in approximately 50% of families the age at ESRD was younger in the offspring. However, they further noted in the other ~50% of pedigrees that the age at ESRD was younger in the parent and concluded that the results did not support anticipation, but were compatible with variation due to other genetic and/or environmental factors.

A number of specific events may explain childhood PKD1; however, analysis of P117 and similar families (15–17) make many of these seem unlikely. A second dominant PKD mutation could have been inherited from the unaffected parent, but no evidence of renal cysts were found on ultrasound examination of II2, or in other reported cases (16,17). A de novo change may have occurred in this allele (or a second change in the mutated allele), but this would not explain the reported recurrence risk (15–17). Tyr3818Stop is a new mutation in the parental generation and de novo changes have been noted in several other early onset families (17). Although this suggests that mosaicism may be important, this appears to be excluded in this case as the extreme differences in phenotype are seen in generation III, after the disease gene has been transmitted through a generation. The disease allele may be differentially expressed, but we saw no evidence of this, with expression detected in lymphocyte mRNA from the normal and abnormal allele of each affected individual.
Figure 2. Ultrasound of the left kidney of III2 taken at 5 years of age. A single large cyst (large C) and multiple smaller cysts (small c) can be seen within the kidney. Similar cystic changes were also seen in the right kidney (not shown).

Figure 3. Direct sequencing of III2 cDNA showing a C→A transversion at position 11665nt resulting in a Tyr→Stop mutation at 3818aa.

(data not shown). Differential expression in the kidney, however, cannot be excluded. The maternal predominance that has been noted in the transmitting parent of early onset cases (16,17) (although not in our pedigree) may reflect imprinting of the PKD1 gene; Bear et al. (26) have shown that PKD1 is significantly more severe if maternally inherited.

The recurrence risk of severe disease noted in the literature (15–17) suggests that inherited factors are important. It is possible that a subtle change at PKD1 may be inherited from the unaffected partner, which only manifests in association with a dominant mutation; different maternal PKD1 alleles are inherited by the twins with very different disease manifestations in this case. However, individuals with two or more affected children from different partners (15), and severely affected cousins and uncles (27,28), indicate that some of these inherited factors are transmitted from the parent with disease. If these factors are not related to the PKD1 mutation itself, we might suppose that they are modifying factors which may also be inherited from the partner. The high calculated recurrence risk for early onset disease (16) indicates that the number of such modifying factors may be small. Interestingly, recent studies in mouse models of PKD indicate that modifying factors can have a profound influence on disease severity (29). We could imagine that the uncloned ARPKD locus on chromosome 6 (30) or human equivalents of the many recessive PKD loci identified in rodents (31) could encode such modifying factors, although these probably reflect just a small proportion of all potential modifiers.

In conclusion, it is unlikely that a dynamic mutation explains the phenotypic variability in PKD1, but it is probable that a small number of modifying factors radically affect disease severity. Mapping and characterisation of these factors may identify important prognostic indicators, especially useful in families with a history of early onset disease. Furthermore, such modifying proteins may interact with the PKD1 protein, polycystin, and identify further steps of a cystic pathway.

MATERIALS AND METHODS

Mutation detection

Lymphoblast cell lines were established from members of P117 by transformation of peripheral lymphocytes with EBV. Total RNA was isolated from cell lines or blood samples using the guanidinium thiocyanate/phenol extraction method (32). cDNA was synthesised from 5 μg total RNA in 50 μl as previously described (19). cDNA was amplified with the NN primers ([11534–11746 nt of PKD1; exons 40–41 (24)] using a DMSO containing buffer (33) and annealing at 62°C with 0.5 mM
MgCl2. The product of 213 bp was analysed by SSCP, as outlined previously (24). The RT-PCR fragment generated with the NN primers from II12 was sequenced directly using a single 5’-biotinylated primer to facilitate the preparation of single-stranded template (Dynabeads M-280 Streptavidin) (34).

Genomic analysis

To analyse the mutation in the entire family, 50 ng genomic DNA of each individual was amplified with the NN primers, as above. The product of 352 bp was digested with BsaAI and analysed on a 2.5% agarose gel. Fragments of 271 bp and 81 bp are normally detected, but the mutation destroys the site, so a 352 bp fragment is observed. Haplotype analysis was performed with the microsatellites: KG8, SM6, 16AC2.5 and CW2 (35).

ACKNOWLEDGEMENTS

We thank J. Sloane-Stanley for tissue culture, L. Rose for manuscript preparation and Professor Sir D. J. Weatherall for support. This work was funded by the Wellcome Trust, the Medical Research Council, the National Kidney Research Fund (ACMO), the Polycystic Kidney Research Foundation and Spanish Fondo de Investigaciones Sanitarias and Comunidad de Madrid (JLSM).

REFERENCES