Our “Increasingly Mobile Society”? The Curious Persistence of a False Belief

Charles F. Longino, Jr., PhD, Douglas A. Wolf, PhD
Our “Increasingly Mobile Society”? The Curious Persistence of a False Belief

Douglas A. Wolf, PhD,1 and Charles F. Longino, Jr., PhD2

Purpose: We call attention to the widespread belief that the United States is an “increasingly mobile society,” despite the fact that overall mobility has generally declined since about 1950, and interstate mobility has generally not increased during the same period. We review and extend past research documenting these mobility trends. Design and Methods: We describe population-level mobility for people of all ages as well as for several adult age groups, using published data from the U.S. Current Population Survey. We use simple regression methods to estimate the size and significance of mobility trends. Results: Overall mobility rates have declined for individuals of all ages and among all age groups. The largest average annual declines occur for 20- to 29-year-olds, although the rate of decline for those aged 65 and older is also large. Interstate mobility has declined slightly or remained constant, except among adults between 45 and 64 years old. Implications: Although there may be good reasons to worry about the future of family care provided to elderly individuals, increased geographic mobility does not appear to be one of them. We speculate on reasons why the false belief persists.

Key Words: Mobility, Migration, Census data, Trends

It is not hard to find examples of scholars who invoke the image of an “increasingly mobile society” when discussing the future of informal elder care in the United States. For example, Tennstedt (1999) speaks of a “concern that changing social trends—smaller family size, increased geographic mobility, greater participation of women in the work force, and rising rates of marital disruption—will decrease the availability or willingness of family members to provide care to a disabled elder” (p. 9). Nearly identical language is found in Angel and Angel (1997). Similar imagery can be found in Donelan and colleagues (2002), whereas Farberman and associates (n.d.) allude to “the push toward . . . geographic dispersion” (p. 10). Government officials have repeated the claim that “increased family mobility” (Administration on Aging, 2000, p. 1) or the “geographic dispersion of families” (Walker, 2002, p. 12) will reduce the future supply of informal caregivers. These ideas also are echoed in documents produced by organizations and advocacy groups devoted to the issue of elder care (Caring from a Distance, Inc., 2003; Feinberg, 1997).

The belief that the United States is an increasingly mobile society is pervasive. Indeed, a search of the World Wide Web for instances of the phrase “our [or an] increasingly mobile society” produces well over 1,000 “hits.” The phrase is used to justify state income tax cuts (Alme, 2002); to advocate for children’s immunization registries (Minnesota Medical Association, 2002) or child support enforcement efforts (Office of Child Support Enforcement, 2003); to explain rising gun violence (Sane Guns, 2003); and to sell anything from self-storage units (Flexospan, 2003) to funeral services (Clayton & Son, 2003).

However, the problem with all the examples just given is that the United States is not, in fact, an increasingly mobile society, if that phrase is taken to refer to the propensity to change residence. A number of studies published during the past few decades have presented evidence that mobility rates have declined, although there have been periods of rising mobility interspersed among the downward trends. We summarize this past research in more detail in the paragraphs that follow, and we go on to present additional evidence of mobility decline from 1948 to the present.

All the sources cited in the first paragraph leave implicit the argument linking the allegedly increased mobility to diminished sources of informal elder care.
However, the underlying logic is presumably that geographic mobility among adults—especially those moves made during the peak years for moving, ages 20 through 30 (Long, 1988)—tends to increase the spatial dispersion of family members. Even retirement migration, typically motivated primarily by amenity concerns (Litwak & Longino, 1987), has been shown to increase the distance between parents and their adult children (Clark & Wolf, 1992). In contrast, moves made by individuals aged 80 and older have been shown to bring older parents into closer proximity to children, relative to nonmovers of the same age (Clark & Wolf). Thus, mobility among all age groups is theoretically relevant to the patterns of informal elder care, although the patterns linking the two phenomena may be complex.

The ideal data with which to study associations between mobility and informal caregiving would include linked information on the location of, and changes in the location of, family members—that is, family mobility data. Such data would allow us to observe directly the spatial dispersion of families. One useful summary indicator from such ideal data would be the average distance separating older people from their adult children. Although there are limited sources of such information in selected cross-sectional sources such as the National Survey of Families and Households, because there are no existing data with which to study trends in such indicators, researchers must rely on available individual mobility data. Our goal, however, is neither to explicate nor to critique the postulated linkage between mobility and elder care; rather, we wish to call attention to the erroneous premise that mobility rates are increasing.

The term mobility refers to any change of permanent address, whereas migration is reserved for moves that cross a county or state line (Gober, 1993, p. 3). Available data typically report statistics on all moves, intracounty moves, intercounty moves, and interstate moves. Our analysis is limited to all-move mobility and interstate migration. Population-level mobility trends in the U.S. can be investigated using three different Census Bureau data series. Lifetime mobility, revealed by a comparison of state of birth to state of current residence, can be traced from 1850 through 2000 through the use of Decennial Census data. Long’s (1988) analysis of data from 1850 to 1980 shows that, for people of all ages, this measure of mobility fell from 1860 to 1900 and then rose through 1980. A more recent study based on a variant of the same mobility indicator (Rosenbloom & Sundstrom, 2003) concluded that migration propensities have not risen since 1970. These lifetime mobility measures, however, overlook both within-state moves and return migration, and they reveal neither the number nor the timing of moves over the lifetime.

A second indicator is the Decennial Census question on place of residence 5 years prior to enumeration, found in the 1940 and the 1960–2000 censuses. The 5-year mobility measure has been used in many research studies (e.g., Long, 1988; Longino, 1995). It, too, may miss multiple moves, and it is subject to recall bias (Long). Moreover, to the extent that rates of mobility and mortality are correlated, especially among the elderly population, it is subject to a type of “survivor” bias. That is, some people move within 5 years of the census but do not live to report it on census day.

The third available mobility data series uses responses to questions comparing current residence with that of 1 year ago, used in the 1950 Decennial Census and in the Current Population Survey (CPS) in most years from 1948 to the present (in some years, questions on 2- or 3-year mobility intervals, as well as other multiples, have been used as well). These data provide information on the percentage of those aged 1 year and older who have changed address during the most recent year. Because the annual mobility measure is least subject to recall and survivor bias and is least likely to miss moves associated with return migration, we focus on the latter measure in our analysis. One limitation of the CPS data is the fact that they come from a sample of the civilian noninstitutionalized population. Thus, in comparison with the Decennial Census data, they are subject to greater sampling error while omitting distinctive components of the population in which recent mobility is highly prevalent, such as the military and nursing home residents. In order to maximize data comparability, we base our entire analysis on published information taken from the CPS.

Past research based on the annual mobility data can be found in Long (1988), Gober (1993), and Bean, Myers, Angel, and Galle (1994). Long examined the period 1948–1984, during which time the trend in mobility, especially for all moves and for within-county moves, was almost uniformly downward. Gober’s analysis, based on data for 1950–1991, concluded that “[a]nnual mobility rates—the percentage of people who move in a given year—have been in a general decline” (p. 6). Gober showed that the consistent downward trend in annual mobility rates from 1950 through the mid-1980s was followed by a temporary upturn, after which the downward trend resumed into the early 1990s. The mobility rate for 1990–1991 was nearly as low as the low for the entire series, attained in 1982–1983.

Both Long (1988) and Gober (1993) analyzed geographic mobility trends for the population as a whole (i.e., those aged 1 year and older). Bean and colleagues (1994) considered trends in age-specific mobility rates, but they used data for only 3 years (1971, 1983, and 1991). Apart from an early study by Thomas (1958) that showed age- and gender-specific annual mobility rates for the period 1948–1957, there appears to be no previous study of long-term trends in age-specific geographic mobility in the United States. Thus, our analysis of annual mobility data for 1948–2003 updates the all-ages results of Long and
Gober while substantially extending the past literature on age-specific mobility trends.

It is evident that the downward trends in mobility have received a good deal of scholarly attention. In addition to the demographic studies reviewed herein, Coontz (1992) pointed out that people born in the 20th century are more likely to live near their birthplace than were those born in the 19th century. Uhlenberg (1993) noted the commonly held assumption that migration rates have increased over time and showed, using some of the data sources already cited, that this assumption is not supported by available data. Tarmann (2003) summarized research that explores reasons for the decline in mobility from 1981 to 2002. Nonetheless, there remains a striking contrast between belief and reality concerning trends in mobility rates, which seems to have so far gone unnoticed.

Data

We present a simple descriptive analysis of mobility rates calculated from published U.S. Census data. The complete time series of annual mobility rates for all individuals aged 1 year and older has been compiled by the Census Bureau and can be found online at http://www.census.gov/population/socdemo/migration/tab-a-1.pdf. For the age-specific rates, we computed the percentage of individuals who moved in each age group by using numerators and denominators found in the Census Bureau’s Geographic Mobility (P-20) series for the years 1948–2003 (in particular, numbers 28, 36, 49, 57, 61, 73, 82, 127, 134, 141, 150, 156, 171, 188, 210, 235, 305, 377, 384, 393, 407, 420, 425, 430, 456, 463, 465, 481, 485, 497, 510, 538, and 549 of this series). These reports are all available online at http://www.census.gov/population/www/socdemo/migrate/; the online tables for the years 1998, 1999, 2001, and 2002 are not assigned report numbers. There are several gaps in the available time-series data (1951–1952; 1958–1961; 1969; 1971–1975; 1977–1980; and 1995). We have interpolated between adjacent values in order to present continuous graphs of the mobility series. This causes the lines in our graphs to be smoother in some periods (especially 1970–1980) than others.

As a means of summarizing the patterns shown in the graphs, we have also fitted simple linear trend regressions, regressing each “percent moved” series on calendar year. These simple bivariate regressions smooth out the year-to-year fluctuations in the data series, and they also provide a test of the statistical significance of the changes over time observed in each series.

Results

Figure 1 illustrates two types of mobility among individuals aged 1 year and older for the period 1948–2003. The upper line represents all moves, including
local moves, whereas the lower line counts only the moves that cross state lines. From 1948 to 1966, total mobility rates are roughly constant although subject to a good deal of fluctuation, some of which may simply reflect random sampling error. From 1966 to 1983, there is a sustained downward trend, and after a dramatic upswing in 1984–1985, the downward trend reappears. Mobility rates in 2003 are clearly at an all-time low as recorded in this data series. For interstate moves, which are much less prevalent, the trend is less obviously downward. However, if we average the interstate mobility rates for major subperiods, we find that the average for 1948–1959 was 3.6%; for 1960–1971, 4.0%; for 1981–1990, 3.5%; and for 1991–2003, only 3.2%. Interstate mobility rates have declined only slightly, and have certainly not risen, during this 55-year period.

The remaining figures illustrate trends in age-specific mobility, separately for all moves (Figure 2) and for interstate moves (Figure 3). Inconsistencies in the grouping of age data over time force us to begin the series for 20- to 29-year-olds and 30- to 44-year-olds in 1953 rather than 1948. These graphs tell a uniform story of declining mobility during most years with one exception, which is interstate moves among 45- to 64-year-olds. The age-specific rates, particularly those for the highly mobile 20- to 29-year-olds, show considerably more year-to-year fluctuation than do the all-ages series. In addition, for people aged 65 and older, there is no evident trend, either up or down, in interstate mobility rates.

Estimated slopes from the simple linear trend regressions are presented in Table 1. They confirm the impression conveyed visually by Figures 1–3. Both of the all-ages trends, and six of the eight age-specific trends, are negative and significant. The largest average annual change in mobility rates is −0.144 percentage points for the all-moves series for 20- to 29-year-olds. It should be noted that this is the age group with the highest levels of mobility, so it has the greatest latitude for downward change. However, the second-largest trend is for all-move mobility among those aged 65 and older, a group for which the levels of mobility are quite low. The slopes of the interstate-mobility regressions are relatively small. The average annual decline in interstate mobility among 20- to 29-year-olds is slightly more than 5 one-hundredths of a percentage point. For only one series do we find an upward trend in mobility: Over time, the level of interstate mobility among 45- to 64-year-olds has grown by 9 one-thousandths of a percentage point per year, on average.

Discussion

The objectives of our analysis are twofold. First, we call attention to the actual trends in mobility rates, which have generally fallen during the second half of the 20th century. Second, we call attention to the paradoxical but persistent belief, among both scholars and the larger public, that the United States
is, contrary to this evidence, an increasingly mobile society. It is not our objective to explain, or forecast, or assess the practical or policy significance of either the observed trend or the paradoxical beliefs. However, why have mobility rates declined? Why do so many people seem to believe that they have risen? We summarize some of the ideas found in past research, and we feel compelled to offer a few speculative comments of our own as well.

Why Has Mobility Declined?

It is evident that short-distance mobility rates have declined substantially, whereas long-distance moves have declined less sharply or have even remained relatively unchanged. Researchers have suggested a number of explanations for these patterns. Long (1988) points out that greater use of the automobile for commuting to work has reduced the need for many work-related moves; Gober (1993) adds that rising rates of home ownership may discourage mobility. Some scholars (e.g., Plane & Rogerson, 1991; Wilson, 1983) have taken a cohort perspective on mobility, pointing out that the economic disadvantages faced by the extraordinarily large baby boom cohort translates into reduced mobility rates. This explanation may account for the sharp drop in interstate mobility among 20- to 29-year-olds during 1970–1982, years during which members of the baby boom cohort were passing through what is typically the most mobile phase of the life cycle. However, this baby boom effect seems to have little applicability to other age groups and other periods. Tarmann (2003) discusses the growing prevalence of two-earner and, more narrowly, dual-career couples (i.e., couples in which both spouses hold managerial or professional jobs), among which opportunities for joint employment-related moves are rarer. Although this is undoubtedly a factor, it seems to have little relevance to the patterns among the 20- to 29-year-olds for whom we found the largest rates of decline: The high opportunity costs of moving associated with dual professional careers are not likely to emerge until later in life.

We find no evidence of declining rates of interstate mobility among those aged 65 and older, suggesting that rates of retirement migration—typically entailing a long-distance move—are unchanged.

Table 1. Slopes of Trend Regressions

<table>
<thead>
<tr>
<th>Age Group</th>
<th>All Moves</th>
<th>Interstate Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td>-0.094^{***}</td>
<td>-0.011^{***}</td>
</tr>
<tr>
<td>20–29</td>
<td>-0.144^{***}</td>
<td>-0.053^{***}</td>
</tr>
<tr>
<td>30–44</td>
<td>-0.051^{***}</td>
<td>-0.001^{*}</td>
</tr>
<tr>
<td>45–64</td>
<td>-0.069^{***}</td>
<td>0.009^{***}</td>
</tr>
<tr>
<td>65+</td>
<td>-0.124^{***}</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

* $p < .05$; ** $p < .001$.

![Figure 3. Percentage of population making interstate moves, by age.](https://academic.oup.com/gerontologist/article-abstract/45/1/5/631703/119261)
decline in all-move mobility for this age group suggests that the downward trend is confined to local moves. One might expect rising local mobility rates among a group for which residential “downsizing” is facilitated by falling mortgage rates. There may have been an increase in vacation-home ownership that partially explains falling mobility. Retirees may, as well, be substituting travel for residential change, including the increasingly popular recreational-vehicle mode of travel (Schwartz, 1988; Yin, 2003). Finally, dual-community residence, or “snowbirding,” which may be substantial, is not captured in census data, which focus on more permanent types of moves (Hogan & Steinnes, 1994).

The sharp increase from 1984 to 1985 in all-ages mobility (reflected, as well, among the younger age groups) is a prominent feature of Figure 1. Indeed, that year’s increase was the largest ever recorded in this data series. The Census Bureau’s own report on the 1985 data (Hansen, 1987) noted that most of the 1984–1985 increase was accounted for by within-county moves, which are typically undertaken to improve housing or neighborhood conditions, and suggested that “the recent upswing in moving is the consequence of delayed residential changes that became economically feasible when interest rates dropped in 1984” (p. 3). However, it should be noted that a very large drop in home mortgage rates from 1982 to 1983 (from 15.14% to 12.57%) was followed by a modest increase in all-ages mobility from 1983 to 1984, whereas a very small decline in interest rates the next year (to 12.38% in 1984) was followed by the historically large increase in mobility from 1984 to 1985. Moreover, mortgage rates continued to fall in all but 3 years through 2003, accompanied by further declines in the mobility rate (these interest rate figures are from Table B-73 of the 2004 Economic Report of the President, online at http://www.gpoaccess.gov/erop/). Hansen mentions another possible explanation for the unusual pattern of 1984–1985, namely a change in the sampling frame for the CPS that was halfway implemented when the 1985 data were collected. The new sampling frame was intended to produce state-level rather than regional-level representativeness, and it also incorporated new definitions of metropolitan areas. Both changes might have introduced a discontinuity into the annual mobility-rate series. An investigation of this possibility, however, would entail a reanalysis of the 1985 CPS microdata, a task that falls outside the scope of this article.

Why is Mobility Believed to be Increasing?

It is interesting to speculate about why a belief that we live in an increasingly mobile society is so widely held. One possibility is that the phrase, at least in some cases, refers to something other than residential or geographic mobility. There are, after all, other forms of mobility including occupational, earnings, or job mobility. The sources cited at the beginning of this article are quite clearly alluding to geographic mobility, however.

Moreover, with specific respect to the issue of elder care, and especially its future prospects, the image frequently invoked is one of spatially dispersed families facing difficulties in arranging or performing care services, clearly an image that is reinforced by the claim of increasing geographic mobility. False claims about trends in mobility made by academics or other professionals might reflect excessive reliance on personal experience or observation; they may also be somewhat self-serving. Long-distance career-related moves are commonplace among academic scholars, who tend to operate in a national job market. Furthermore, the issue of long-distance caregiving may be particularly salient among middle- and upper-class professionals, who are, in turn, more highly educated and relatively more mobile than the overall population. Finally, there may be a good deal of second-hand perpetuation of the image of the “increasingly mobile society,” especially among those with a commercial stake in that image.

Although the idea that geographic mobility is increasing may not deserve the status of social myth, the persistence of this false belief shares some parallels with the myth examined in the famous articles of Shanas (1979) and Brody (1985), namely the myth that family members abandon their elderly parents. Brody decried the use of the myth to justify policies designed to encourage or force a return to the “good old days of family values” (p. 27). Paradoxically, the present-day alarmist references to an increasingly mobile society are used to help make the case for new or expanded programs and services to meet the needs of frail or disabled elders. Nevertheless, as the quotation from Tennstedt (1999) with which we began makes clear, there are many other good reasons—reasons well grounded in fact—for concern about the future of elder care in the United States.

References

10 The Gerontologist