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Strategies investigation in using artificial neural network

for landslide susceptibility mapping: application to a

Sicilian catchment

Elisa Arnone, Antonio Francipane, Leonardo V. Noto, Antonino Scarbaci

and Goffredo La Loggia
ABSTRACT
Susceptibility assessment of areas prone to landsliding remains one of the most useful approaches in

landslide hazard analysis. The key point of such analysis is the correlation between the physical

phenomenon and its triggering factors based on past observations. Many methods have been

developed in the scientific literature to capture and model this correlation, usually within a

geographic information system (GIS) framework. Among these, the use of neural networks, in

particular the multi-layer perceptron (MLP) networks, has provided successful results. A successful

application of the MLP method to a basin area requires the definition of different model strategies,

such as the sample selection for the training phase or the design of the network structure. The

present study investigates the effects of these strategies on the development of landslide

susceptibility maps by applying different model configurations to a small basin located in

northeastern Sicily (Italy), where a number of historical slope failure events have been documented

over the years. Model performances and their comparison are evaluated using specific metrics.
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INTRODUCTION
Every year landslide events hit various areas throughout the

world, often causing severe economic and social damage,

thus making the field of landslide prevention a current

issue in land management.

The availability of innovative technologies and the grow-

ing need for an efficient management of natural hazards

have recently led to the development of new methods for

landslide prevention analysis, following on from the classi-

cal deterministic ones (Arnone et al. ). In general, the

methods based on the recognition of landslide-prone ter-

rains are traditionally considered one of the most useful

approaches (Hansen ), whose ultimate goal is to

define susceptibility maps.

The term ‘susceptibility’ commonly refers to the prob-

ability of a landslide occurrence over a region, based on

empirical or modeled relationships between historical
events and the so-called landslide-inducing or triggering fac-

tors (Varnes & IAEG ). It follows that the estimation of

susceptibility results in a spatial correlation analysis

between the triggering factors and landslides occurrences.

The scientific literature of the last two decades has high-

lighted how statistical and geographic information system

(GIS)-based methodologies have been particularly successful

in the definition of susceptibility maps. Among the statistical

methods, both the bivariate and the multivariate approaches

have been widely used in many susceptibility analyses. By

using the bivariate statistical methods (Lee & Pradhan

; Lepore et al. ), the contribution of each landslide-

inducing factor to slope failure susceptibility is evaluated

individually, overlooking the possibility that the different fac-

tors may have a mutual relationship. In multivariate

statistical methods, all factors are analyzed using multiple

mailto:elisa.arnone@unipa.it


503 E. Arnone et al. | Strategies investigation in using artificial neural network for landslide susceptibility mapping Journal of Hydroinformatics | 16.2 | 2014

Downloaded from http
by guest
on 17 January 2019
regression techniques. In particular, the logistic regression

model (Hosmer & Lemeshow ) is well suited to analyze

the presence/absence of a dependent variable (Carrara et al.

; Guzzetti et al. ; Lee et al. b; Lee & Pradhan

; Lepore et al. ), representing one of the most applied

methods. The multivariate statistical methods offer the

advantages of significantly reducing the number of factors

to be analyzed, allowing the identification of additional vari-

ables that more influence the dependent variable.

However, these statistical approaches are based on some

assumptions that often do not match the properties of the

distribution of landslides factors. Also, because of these limit-

ations, recently, new techniques have been explored that

favor a data-driven modeling approach.

Among the data-driven methods, the artificial neural

network (ANN) is the model that overcomes most of the

above-mentioned limits. This model has the ability to

handle a large amount of information and to learn complex

model functions from examples, i.e., by ‘training’, using sets

of input and output data (Giustolisi & Savic ).

The use of ANNs for landslide susceptibility analysis has

seen an increasing number of successful applications in

recent years (Lee et al. b; Ermini et al. ; Yesilnacar

& Topal ; Caniani et al. ; Melchiorre et al. ;

Nefeslioglu et al. ; Bai et al. ; Falaschi et al. ;

Pradhan&Lee ; Doglioni et al. ). An interesting com-

bined use of the logistic regression model and ANN method

has been proposed by Lee et al. (b), who used a probabil-

istic method to calculate the rating of the relative importance

among the classes of each triggering factor, and an ANN

method to calculate the weight of the relative importance of

each triggering factor. Nefeslioglu et al. () showed that

ANNs provide a more optimistic evaluation of landslide sus-

ceptibility than logistic regression analysis, whereas

Melchiorre et al. () improved the predictive capability

and robustness of ANNs by introducing a cluster analysis.

One of the most critical issues in applying an ANN for

landslide analysis is the selection of the proper dataset to

use to train the model structure. This issue is commonly

ignored and not well stated in scientific works (Nefeslioglu

et al. ). To our knowledge, a clear and universal cri-

terion has not been provided yet. Among a few studies,

Yilmaz () makes an interesting contribution to this

topic by analyzing the effects of different sampling strategies
s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
(scarp, seed cells, point) on the definition of landslide sus-

ceptibility maps, demonstrating that scarp sampling

strategy performs better than the point strategy, which is

commonly used in many works. Moreover, Tian et al.

() and Lee et al. () show how the available resol-

ution of the landslide inventory map can affect the choice

of the input map resolution, and the use of an input map

with finer resolution does not necessarily increase the accu-

racy of landslide susceptibility maps.

Starting from the work described in Arnone et al. (),

this study proposes the use of the ANN-based methodology

for the landslide susceptibility mapping of a small Sicilian

catchment (Italy), where a number of historical events

have been documented over the years. In particular, it will

investigate how sampling strategies and the design of the

neural network structure can improve the resulting maps.

The results from the comparison of these different strategies

may provide important indications for future analyses.
METHODS

Artificial neural networks

The use of ANNs is a valid alternative to the classical statisti-

cal methods when amultivariate approach is needed, such as

in a landslide susceptibility analysis. An ANN is a collection

of basic units, called neurons, computing a nonlinear func-

tion of their input and able to perform pattern recognition

and classification (Haykin ). The main characteristic of

ANNs consists of the ability to derive rules frommultivariate

data after self-learning the reality and then to reproduce pre-

dictive patterns. Every input has an assigned weight that

determines the influence of this input on the overall output

of the node.

Among the different types of ANNs, the multi-layer per-

ceptron (MLP) network is currently considered the most

well-used type (Ermini et al. ), especially in landslide

susceptibility analysis (Lee et al. ), and thus it was

chosen in this application.

The architecture of theMLP consists of a number of neur-

ons connected by weighted links and placed into different

layers: an input layer, with a number of neurons equal to

the number of the independent variables, an output layer,
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with a number of neurons equal to the number of the depen-

dent variables, and ultimately one or more so-called hidden

layers. The MLP is a feedforward ANN, where an arbitrary

input vector is propagated forward through the networkwith-

out feedbacks (Hines ). Layers are fully connected to

each other, i.e., each neuron on a layer is connected to

every neuron on the following layer. The hidden neuron

layers make a linear combination of input signals, convert

them through a generally nonlinear function (activation func-

tion), to then transfer the information to the next layer. The

number of hidden layers and the number of nodes in a

hidden layer which are required for a particular classification

problem are not easy to deduce (Lee et al. ). MLP net-

works with one hidden layer are commonly used in

landslide susceptibility modeling and they are considered to

provide enough complexity to accurately simulate the non-

linear properties of the landslide process (Lippmann ).

Neural networks are also called ‘machine learning algor-

ithms’, because the changing of their connection weights

causes the network to learn the solution to a problem. The

strength of a connection between the neurons is stored as a

weight-value for each specific connection. The system

learns newknowledge by adjusting these connectionweights.

The key instrument that allows the network to learn the

dynamics of a particular phenomenon is called training

phase. During the training phase a set of known input–

output couples are fed to the network and the weights are

updated by following some pre-determined learning rule, so

that the resulting output vector of the net is almost equal to

the target vector. Weights are updated to minimize a cost

function E and the distance between the target and the

actual output vector. The learning ability of a neural network

is determined by its architecture and by the algorithm chosen

for training. The ‘error back propagation’ (Werbos ) is the

most widely used learning algorithm to perform a gradient

descent along the cost surface of ANNs (Lee et al. ),

and it is also used in this study. Information about errors is fil-

tered back through the system and is used to adjust the

connections between the layers, improving performance.

Assessment of model performance

Model performance of ANNs is evaluated by means of the

area under the curve (AUC) of the receiving operating
om https://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
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characteristic (ROC) curves (Fawcett ). The AUC

ranges from 0 to 1 and gives a measure of the model’s ability

to discriminate between elements that experienced the out-

come of interest (landslide occurrence) versus those which

did not. An AUC value of 1 indicates a perfect fit of the

model to reality, while a value of 0.5 represents a fit indistin-

guishable from random occurrence. The measure of the

model’s ability in identifying correctly the elements which

experience the outcome of interest (true positive rate) is

called ‘sensitivity’, while the measure of the model’s ability

in identifying correctly the elements that do not experience

the outcome of interest (true negative rate) is known as

‘specificity’. The ROC curve is built plotting the sensitivity,

versus 1-specificity, over all the possible cutoffs, i.e., those

threshold values separating the two opposite states (in this

case landslide and no landslide).
CASE STUDY: THE TIMETO CATCHMENT

The Timeto catchment is located in northeastern Sicily,

between the Peloritani Mountains and the Tyrrhenian

coast, within the Messina district (Figure 1(a)). The catch-

ment is approximately 95 km2 in size and its elevation

ranges between 0 and 1,350 m a.s.l. (Figure 1(a)). The high-

est number of landslides and the largest area of soil removed

by landslides in Sicily characterize this area. Because of its

well-documented slope failure history, this basin has been

used in the evaluation of landslide susceptibility maps.

The basin morphology consists of a mainly flat coastal

region with low slopes toward the sea, and a mountain

region with a rugged morphology, narrow valleys, and very

steep hillslopes. The region between the coast and the

mountains is characterized by hills with variables slopes.

The climate of the catchment is typical of the Mediterra-

nean area. Mean annual precipitation (MAP) ranges

between 700 and 800 mm in the coastal and hill regions,

and 800 and 1,000 mm in the mountain region (Di Piazza

et al. ). The mean annual temperature is 18 WC with the

average monthly maximum temperatures of 30 WC in July,

and the average monthly minimum temperatures of 4.5 WC

in February.

The runoff regime of the Timeto river is ephemeral like

many other rivers in northeastern Sicily, with low-flow or



Figure 1 | Study area: (a) digital elevation model and (b) landslide inventory of the Timeto catchment.
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null discharges during the dry season and high-flow dis-

charges during the autumn and the winter (Viola et al. ).
Landslide inventory

The landslides inventory has been derived from the Carta

Inventario delle Frane, made by the Assessorato Territorio

ed Ambiente della regione Sicilia in 2006 (P.A.I. ).

The map reports around 700 landslides inside the Timeto

catchment and classifies them according to the Varnes’

classification (Varnes & IAEG ). Starting from this

map, the landslide inventory for the Timeto catchment has

been created (Figure 1(b)) including only four landslide

classes (flows, falls/topless, slides, and complex landslides).

The resulting inventory map describes the landslide events

by polygons, according to the scarp sampling strategy of

Yilmaz (). The average value of landslide areas is

about 2.1 ha and more than 85% of landslide polygons

have an area greater than 1 ha; finally, almost 10% of the

basin area has experienced slope failure.
Landslide-inducing factors

In any method used for landslide susceptibility analysis, the

initial choice of landslide-inducing factors can be con-

sidered the most subjective step. However, past
s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
experiences, the knowledge of the site, and several examples

from the literature can be useful in identifying the factors

that may mostly affect slope failure. In this study, the follow-

ing factors have been chosen, based also on the data

availability:

• Morphometric parameters, such as aspect (Figure 2(a)),

slope angle (Figure 2(b)), profile curvature (Figure 2(c)),

and distance from the stream network (Figure 2(d)).

• Geological characteristics, such as lithology and distance

from the faults.

• Hydro-climatic characteristics, such as the MAP, and the

hydrological parameters a and n of the rainfall depth–

duration curve, expressed as hd,t ¼ aTdnT ; hd,T is the

hydraulic head for given duration d and return period T

of rainfall. The MAP data come from Di Piazza et al.

(), while the parameters a and n were derived from

Lo Conti et al. (), and allow one to take into account

the effect of very intense rainfall on landslide

susceptibility.

• Other spatial information, such as land use, derived from

the Corine Land Cover (APAT ) map (Figure 2(e)),

soil types map, derived from the Sicilian soil map

(Figure 2(f)) (Fierotti & Ballatore ), and distance

from the roads, considering how road construction

often implies an important disruption of the original

slope.



Figure 2 | Some characteristics of the Timeto catchment used as landslide inducing factors: (a) aspect, (b) slope, (c) curvature, (d) distance from the faults, (e) soils, and (f) land use maps.
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Similarly to the landslide inventory, all these factors

have been used to build a spatial database in the form of

maps (see the section below). Each map represents a poss-

ible inducing factor for rainfall-induced landslides on the

Timeto catchment.

GIS database

All the data listed in the previous two paragraphs (landslide

location, morphology, land use, soils, geology, climate for-

cing, etc.) have been used to create the spatial database

used in the analysis. The spatial database was built using

ArcGIS/ArcINFO software.

The grid maps of the primary morphometric parameters

(Wilson & Gallant ), such as slope, profile curvature,

and aspect, were derived from a 100-m resolution digital

elevation model (DEM) (resampled by the original 30-m res-

olution DEM produced by ‘Regione Sicilia’), by means of

spatial analysis techniques.

Other data, such as the landslide inventory map, the

1:250,000 scale soil map, the 1:50,000 scale geology map,

and the 1:100,000 scale land use map, were digitized into

vector structures (shapefile format) and then converted

into a grid structure using the same spatial extent and resol-

ution of the 100-m DEM. Finally, all the grid maps have the

same resolution.

The choice of a 100-m DEM was induced and supported

by various reasons, particularly: (1) the pixel size is compar-

able with most of the real landslide areas (1 ha) sampled

with the scarp strategy; (2) according to Tian et al. ()

and Lee et al. () a resolution finer than the landslide

scale it is not preferable; (3) the scale of some of the used

input map (geology, pedology, land use) is not very accurate,

suggesting the use of a coarser resolution, according to Lee

et al. (a). Finally, the main target of the work is to inves-

tigate and compare different model strategies, therefore the

use of the same accuracy is more significant than the level

of accuracy itself.

The landslide map (Figure 1(b)) was converted and

reclassified into a binary grid map with 1 for landslide

cells and 0 for no landslide cells.

Over the entire studyareaof 100 m×100 m, 9,593 cells, 928

are landslide cells, corresponding to about 9.7% of the basin

area, while the remaining 8,665 cells are no landslide cells.
s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
All the grid maps were finally exported to the Esri ASCII

grid format, to use them within the Neural Network toolbox

of MATLAB software (Mathworks), here chosen to design

and apply the MLP network.
Application of artificial neural network model

As described in the section ‘Artificial neural network’, the

phases involved in the development of the MLP network

are various and need to be carefully defined in order to

build up the most successful model. Such steps are identified

as follows: (1) data selection for the network training, (2)

MLP design (input, hidden and output layers, and number

of nodes), (3) network training (choosing activation and

transfer functions), and (4) classification.

(1) Data selection for the network training

The selection of a proper dataset for the network train-

ing is far from being obvious and represents one of the

most critical steps, although not many works on landslide

susceptibility have noted this. It is common to select a

random subset of cells corresponding to a portion of the

entire database (Lee et al. ; Ermini et al. ), which

includes both landslide and no landslide cells. However,

in most studies, the selected subset rarely maintains the

actual ratio between landslide and no landslide areas, and

the percentage of landslide cells in the subset is often

increased with respect to the total area. In particular, Lee

et al. () randomly selected a fixed number of cells

from each of the two classes (landslide and no landslide),

setting a ratio between landslide and no landslide cells

equal to 1:1, despite the recorded ratio relative to the

entire area being equal to 1:56. They analyzed three different

sizes of cell number, 200, 400, and 600 pixels/class, respect-

ively, which corresponded to percentages of 1.7, 3.4, and

5.1% of the landslide cells and 0.03, 0.06, and 0.09% of

the no landslide cells. They claimed that the number of train-

ing locations had little influence on the analysis. In Ermini

et al.’s () work, the training phase was executed on a

subset corresponding to one-third of the entire database,

randomly selected from the whole dataset. Caniani et al.

() randomly selected 32% of the entire landslide data-

base (which in turn corresponds to 34% of the entire

basin). Melchiorre et al. () adopted cluster analysis
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technique for the selection of training data, by using the

early stopping technique (Caruana et al. ).

In our application, three different subsets were defined

in order to pursue the best configuration. Both the methodo-

logical (one subset) and the random (two subsets) criteria

have been applied.

In the case of the methodological criterion, 10 kernels of

15 × 15 pixels were placed over the entire basin, selecting

the pixels (landslide and no landslide) falling therein. The

kernels were especially placed in such a way to ensure

that landslide pixels were distributed over the basin, avoid-

ing overlaps. In this way subset 1 was obtained, which

counts 399 landslide cells and 1,741 no landslide cells and

includes 43% of landslide database and 20.1% of the no

landslide area, respectively (Table 1).

In the random case, we randomly selected 50% of land-

slides cells (464 cells) while the no landslide cells were

randomly selected in numbers reflecting two different

ratios between landslides and no landslide cells, equal to

1:1 (subset 2), according to Lee et al. (), and 1:2

(subset 3) (see Table 1 for details).

(2) MLP design

The definition of the MLP structure requires the defi-

nition of input, hidden and output layers, and number of

nodes for each layer.

The structure of the input vector depends on (i) number

and type (continuous or categorical) of triggering factors

and (ii) methodology used in representing the data. Here

the methodology presented in Chung et al. () and

Ermini et al. () has been used, representing each vari-

able as a sequence of binary numbers. First of all, the

approach requires categorization of each landslide factor
Table 1 | Runs carried out in the analysis. Configurations differ for subset used in the training

Dataset description

Run Training dataset Landslide cells % No landslide cells %

NN1 Subset 1 399 43 1,741 20.1

NN2 Subset 1 399 43 1,741 20.1

NN3 Subset 2 464 50 464 5.4

NN4 Subset 3 464 50 928 10.7

NN5 Subset 3 464 50 928 10.7

om https://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
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in classes; in the case of categorical factor (such as land

use, pedology, etc.), the original classes were kept; in the

case of continuous variable (e.g., slope, distance from

road, etc.), a quantile-based classification was used. The

number of classes for each variable is shown in Table 2,

for a total number of 73 classes. At each computational

cell (i.e., each cell of the basin), the input vector is rep-

resented by a string of binary values indicating whether

the cell belongs (1) or not (0) to each of the 73 classes. As

an example, Figure 3(a) shows the binary string of a given

cell characterized by an aspect value falling into class 9, a

curvature value falling into class 4, a distance from faults

falling into class 4, and so on. Such a method, although

increasing considerably the number of computational

nodes, is capable of providing an efficient and objective

approach.

With regard to the number of hidden layers, a single

layer is commonly used in landslide analysis applications.

The number of nodes for this layer can be defined on the

basis of the number of the input nodes and training cells

by using empirical criteria (Yesilnacar & Topal ). The

application of such criteria provided us with a wide range

of values, going from 7 to 5,440 nodes, for subset 1. We

thus choose two different configurations with 74 (number

of input nodes increased by 1) and 140 (about double)

nodes in the hidden layer, respectively. Lastly, one node is

used in the output layer, corresponding to the output value

of susceptibility at each cell; output values range from 0,

for minimum susceptibility, to 1, for maximum suscepti-

bility, and ultimately represent the probability of slope

failure for the cell. The overall network structures are

denoted as 73 × 74 × 1(RN1) and 73 × 140 × 1(RN2) and

are shown in Figure 3(b).
phase, number of nodes in the hidden layer, and used back-propagation algorithm

TOT cells % Network
No nodes hidden
layer

Back-propagation
algorithm

2,140 22.3 RN1 74 SCG

2,140 22.3 RN2 140 SCG

928 9.7 RN2 140 SCG

1,392 14.5 RN2 140 SCG

1,392 14.5 RN2 140 GDM



Table 2 | Processing of landslide inducing factors and landslide variable in classes

ID Variable No. classes

1 Aspect 9

2 Curvature 5

3 Distance from faults 10

4 Distance from stream network 10

5 Lithology 6

6 Hydrological parameter n 5

7 Pedology 8

8 Slope 6

9 Land use 14

Total number of classes 73
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(3) Network training

Among all the back-propagation algorithms available

in the literature, two of the most suitable to treat a large

amount of data are the GDM (gradient descend with

momentum) and the SCG (scaled conjugate gradient)

algorithms. Both the algorithms were used in the simu-

lations according to the configurations described in
Figure 3 | (a) Representation of the binary string used to generate the input vector (modified

s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
Table 1, in order to compare the performances of both

the models. The chosen activation function is a sigmoid

function (sgm), which returns values ranging from 0 to 1.

(4) Classification

In order to estimate the landslide susceptibility, all the

landslide-inducing factors are fed into the designed MLP

network. The network returns the susceptibility values at

each cell grid on the basis of the weights found during the

training phase. For each cell, the relative position in the

grid structure is recorded and used to reconstruct the sus-

ceptibility grid.

All the used configurations are summarized in Table 1,

for a total of five runs indicated as NN followed by an ordi-

nal number (first column). Each run uses a different

combination of training dataset (subset 1, subset 2, and

subset 3) (second column), network structure (RN1 and

RN2) (fourth column) and back-propagation algorithm

(GDM and SCG) (last column). The number of landslide

and no landslide cells used during the network training is

reported in the third column while the fifth column reports

the number of nodes in the hidden layer.
from Ermini et al. (2005)) and (b) the overall network structures used for the simulations.
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RESULTS AND DISCUSSION

In this section, the performances of the different exper-

iments are compared and discussed in order to analyze

the effects of network design, training subsets, and back-

propagation algorithms on the results. The quantitative

evaluation of goodness of fit of the models and their com-

parison are provided by the ROC curves and their relative

AUC, all shown in Figure 4. As previously stated, the

higher the AUC, the better the model is in terms of reprodu-

cing the occurrences. In particular, Hosmer & Lemeshow

() suggested the following general rule in order to

interpret the capability of the model: AUC¼ 0.5 suggests

no discrimination; 0.7�AUC< 0.8 is considered acceptable

discrimination; 0.8�AUC< 0.9 is considered excellent

discrimination; AUC� 0.9 is considered outstanding

discrimination.
Effects of network design

Runs NN1 and NN2 use the same subset for training phase

(subset 1), the same back-propagation algorithm (SCG) but

different network configurations, RN1 and RN2, respect-

ively, which are characterized by 74 and 140 nodes in the

respective hidden layers. Both the networks provide accep-

table results in terms of fit of model, with AUC values

equal to 0.707 and 0.727, respectively, both greater than

0.7 indicated as the lower limit for acceptable discrimi-

nations (Hosmer & Lemeshow ). Even if RN2

provides a more efficient model (increase by 4% of AUC,
Figure 4 | ROC curves obtained for the five configurations of ANNs and the corre-

sponding values of area under the curve (AUC).
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Figure 4), it is a more complex network, with a greater

number of nodes which leads to higher computational costs.

Effects of the training subset

RunsNN2andNN3differ in using twodifferent subsets for the

training phase, methodological (subset 1) and random (subset

2), respectively. As stated, the methodological criterion pro-

posed ensured the training pixels were selected over the

entire basin, without fixing the number of landslide and no

landslide cells. The resulting percentages of selected pixels

were 43% among the landslide cells and 20.1% among the

no landslide cells, for a total of 2,140 cells, corresponding to

22.3% of the entire basin area. On the other hand, the

random criterion selected the cells by fixing an equal

number for both landslide and no landslide cells (ratio 1:1),

resulting in 50 and 5.4% of the respective areas, randomly dis-

tributed over the basin. In this case, a total of 928 cells were

selected, corresponding to 9.7% of the entire basin area.

By comparing the results of simulations (Figure 4), it is

interesting to observe that run NN3, which uses the

random criterion of data selection, provides a value of

AUC higher than run NN2 (0.769 versus 0.727), an improve-

ment of 8.2% for the model performance. In other words, a

smaller sample (9.7% versus 22.3% of the entire dataset), but

more representative of the modeled phenomenon (50% of

landslide occurrences versus 43%), allows the network to

better learn the data structure and thus better reproduce

the spatial patterns.

In subset 3, used for run NN4, the number of landslide

cells (464) does not change, but the ratio of landslide/no

landslide cells is equal to 1:2 and the number of no landslide

cells is doubled to 928 (10.7%). A total of 1,392 elements are

selected, corresponding to 14.7% of the entire basin area.

NN4 results show a further improvement in the AUC

value (equal to 0.827 with an increase of 11.6% in model

performance with respect to NN3), suggesting that a correct

choice of ratio between landslide and no landslides

elements (in this case 1:2) is also important.

Effects of the back-propagation algorithm

Runs NN4 and NN5 use the same subset for the training

phase (subset 3), but different back-propagation algorithms,
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SCG and GDM, respectively. Both algorithms are the most

used in such analyses because they are suitable in managing

large datasets. The results shown in Figure 4 indicate that

the two algorithms provide almost the same performances,

with an AUC of NN5 slightly lower than NN4, equal

respectively to 0.819 and 0.827.

Although the AUCs are very similar, the two runs have

very different computational performances. The GDM

algorithm required a much longer training phase, with a

number of iterations (epochs) equal to ten times those

required in SCG, 3,000 versus 300. Other differences are

found in the spatial patterns of the output values, discussed

in the following section.

Susceptibility maps

In order to obtain the final susceptibility maps and make

their comparison easier, the slope failure probability distri-

bution obtained by each ANN application was classified

into five levels of probability. Classes are defined as follows:

very low (0–0.1), low (0.1–0.25), medium (0.25–0.45), high

(0.45–0.7), very high (0.7–1) susceptibility. The choice of

these class breakpoints is based on the literature, and con-

siders values greater than 0.4–0.5 as highly susceptible

(Lee et al. ; Ermini et al. ; Melchiorre et al. ).

Figure 5 shows the relative frequency distribution of the

susceptibility areas over the five classes and for the five con-

figurations. The susceptibility values returned by the models

are mostly distributed over two of the five available classes,

i.e., the basin is mostly classified either as very low
Figure 5 | Empirical frequency distribution of susceptibility values over five classes of

susceptibility for the five configurations of ANNs.

s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
susceptibility or very high susceptibility to landsliding. In

particular, for runs NN1 and NN2, almost 80% of the

basin area falls in the lowest class and about 10% in the

highest class. The remaining 10% is equally distributed

among the other three classes. The corresponding maps,

together with the locations of historical events (depicted as

polygons), are shown in Figure 6 (NN1 and NN2); the two

maps are very similar. Although the percentage of high sus-

ceptibility area is close to the percentage of landslide area

(about 10%), there is not a perfect agreement between the

two areas, as measured in the ROC curves. Most of the

basin area is classified as very low, the remaining classes

appeared to be spread over the basin as ‘small spot’ areas,

mostly corresponding to single cells. A visual comparison

between the two maps suggests that increasing the number

of nodes in the hidden layer from 74 (NN1) to 140 (NN2)

does not significantly change the reproduced pattern.

Run NN3 classifies 40% of the basin area in the very

high class and 50% in the very low class; again, the remain-

ing 10% is equally distributed among the other three classes

(Figure 5). Visually there is a good agreement between the

very high susceptibility areas and the locations of historical

events (polygons) (Figure 6, map NN3); however, the areas

falling in the highest class are too large compared to the

landslide polygons, generating a large number of false posi-

tives. This particular result is due to the choice of subset 2 in

the training phase, where the network learned more about

the landslide areas than the no landslide areas (in subset

2, 50% of landslide cells versus 5.4% of no landslide cells

were used, see Table 1).

Run NN4, which uses subset 3 for the training phase and

thus a greater number of no landslide cells, provides a different

classification. The relative frequency distribution depicted in

Figure 5 shows that in NN4, 56% of the basin is classified as

very low susceptibility, almost 25% as very highly suscepti-

bility and then 8% as low, 5% as medium, and 6% as high

susceptibility. Also, the corresponding map presented in

Figure 6 shows a spatial distribution of the very high suscepti-

bility areas over the basin different from the previous maps, in

very good agreement with the landslide locations.

Finally, in run NN5, which differs from the last case only

in the back-propagation algorithm (GDMinstead of SCG), the

basin area is classified with values of susceptibility falling

within all the five classes more homogeneously. In particular,



Figure 6 | Susceptibility maps of the five configurations of ANNs. Historical landslide locations are also reported in each map.
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about 40% of the basin area falls within the very low class,

30% within the very high class, and then 11, 9, and 10%

within the low, medium, and high classes (Figure 5). The cor-

responding map in Figure 6 shows again a very good

agreement with landslide locations but a large number of

false positive hits. In fact, the AUC value is slightly lower

than the case described above.
om https://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
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Remarks

Overall, all configurations have shown acceptable results in

terms of capability to correctly detect the occurrence or

non-occurrence of predefined events; this is confirmed by

the ‘acceptable’ or ‘good’ AUC values, which are within the

range of values obtained by other studies (e.g., Yesilnacar &
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Topal ()). Runs NN4 and NN5 seem to provide the best

results, both in terms of fit of model and spatial patterns.

These results confirm the importance of selecting a proper

sample for the network training, in order to understand and

reproduce the correct structure of data. In fact, the results

demonstrated that a larger sample does not necessarily lead

to higher model performance, while subsets with higher per-

centages of landslide area do. Increasing the number of nodes

in the hidden layer slightly improves the model perform-

ances, while the choice of the back-propagation algorithm

has to be evaluated carefully to improve the spatial results,

but does not increase the model capability.
CONCLUSIONS

The use of ANNs in landslide susceptibility analyses has

become a valid alternative to the use of statistical methods,

due to the particular capability in analyzing spatial corre-

lation data, without requiring strict statistical assumptions.

The application of ANNs to a given area requires the

definition of several model strategies that need to be care-

fully set with regard to the definition of the model

structure and the selection of dataset for a proper learning

phase. This study has provided an investigation of model

strategies by applying different MLP network configurations

to a small Sicilian basin, in order to evaluate the effects of

each strategy on the resulting landslide susceptibility maps.

In particular, the following issues were analyzed: data selec-

tion for the network training, number of nodes in the hidden

layer, back-propagation algorithms. Quantitative evaluation

of model performances and their comparison were made

by means of the AUC.

On the basis of the AUC values, according to the general

rule suggested by Hosmer & Lemeshow (), all network

configurations showed an acceptable capability to correctly

discriminate the data experiencing landslides from those not

experiencing landslide.

The higher number of nodes in the hidden layer leads to

a slight improvement of model performances; however, this

may not justify the increase of the computational costs given

by a more complex network.

With regard to the strategies in selecting the data for the

network training, it was demonstrated that the largest sample
s://iwaponline.com/jh/article-pdf/16/2/502/387319/502.pdf
does not lead to the most performing model, as claimed by

Lee et al. (); however, in contrast to that same work, it

was demonstrated that the percentage of selected landslide

area, related to the entire basin area (and not only landslide

area), plays a more significant role. Moreover, it was con-

firmed that the commonly used random criterion of data

selection (Ermini et al. ; Lee & Pradhan ; Caniani

et al. ) leads to a more performing learning phase

when compared with a methodological approach.

Finally, the use of two of the most known back-propa-

gation algorithms, GDM and SCG, did not lead to

significant differences in model performances. However,

they lead to a different distribution of susceptibility values

within the range of validity, with the GDM algorithm pro-

viding output results within all the susceptibility classes at

considerable percentages.

Moreover, the results showed that MLP network models

are capable of providing satisfactory agreement with the exist-

ing landslide location data, which have been classified within

the higher susceptibility classes; this occurs especially in those

cases that use the random criterion for data selection.

Although the overall results were satisfactory, it is worth

pointing out that ANN models do not offer the possibility of

making explicit direct considerations on the role of each

landslide-inducing factor. In fact, it is difficult to follow the

internal learning process (Lee et al. ) and to understand

the physical relationship between factors and modeled

phenomenon, which is instead possible to define in the stat-

istical methods.
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