The effect of shearing band inclination is investigated in Fig. 15 and the observed angles are independent of gap size.

3.6 Shear Band Distribution. A significant observation that deserves mention is that, aside from a preference toward the inlet to the gap for the initial appearance of a band, one can not predict beforehand the location of a shear band. This is particularly apparent at intermediate shear rates where bands appear in clusters with unaffected liquid in between (see Figs. 7 and 9). One may then conclude that a shear band will nucleate in a linear viscoelastic matrix when the shear stress reaches \(\sigma_{\text{lim}} \) and \(\sigma \). One may then conclude that a shear band will nucleate in a linear viscoelastic matrix when the shear stress reaches \(\sigma_{\text{lim}} \) and \(\sigma \). One may then conclude that a shear band will nucleate in a linear viscoelastic matrix when the shear stress reaches \(\sigma_{\text{lim}} \) and \(\sigma \).

\(\gamma \) is therefore statistically distributed within the material and the mean of that distribution is the limiting shear stress, \(\sigma_{\text{lim}} \). \(\gamma \) is therefore statistically distributed within the material and the mean of that distribution is the limiting shear stress, \(\sigma_{\text{lim}} \).

We would expect that the functional form of Eq. (1) is a result of that distribution.

4 Conclusion
A High Pressure Flow Visualization Cell has been designed and constructed to perform a fundamental investigation of the deformation behavior of liquid lubricants under lubricated concentrated contact conditions. A pressure of 0.3 GPa and a shear stress between parallel plates of about 25 MPa have been demonstrated. Time averaged velocity profiles show no continuous slip either in the bulk or at walls. Localized slip at shear bands inclined to the walls was demonstrated to occur during nonlinear shear response. The number of shear bands increases with shear rate (and shear stress) from as few as one at the onset of non-Newtonian flow until the shear region is essentially filled with bands with a spatial periodicity of 7 \(\mu \)m. Bands are typically angled 16 to 23 deg off of the solid surfaces which reduces the compressive normal stress due to shear on the plane of the band. This angle may be a property of the material. Of course, conservation requires that slip not extend to the boundary. The shear band may turn tangent to the wall or end near the boundary. According to Haward (1973) shear bands may be wholly contained within the body accommodated by elastic deformation between the ends of the bands and the boundaries.

Acknowledgments
The authors are grateful for support from the Office of Naval Research, Materials Division.

References
plotted as a function of shear rate $\dot{\gamma}$ and typical results are quoted by the authors in Fig. 1 of their paper. There is some dispute as to whether the behavior is better expressed by an Eyring type relation or by a semi empirical law of the type given in the paper by Eq. (1).

The authors have wisely side-tracked this issue by adopting the approach (much favored by the late Philip Bowden) that direct observation of what goes on in the film during shear may be more important than theoretical modeling. The experiments the authors describe are outstanding in providing direct viewing of the liquid while it is sheared. Ingenious techniques show that there is no slip at the walls. Perhaps the most striking observation is that above some critical shear rate, where the liquid ceases to behave in a Newtonian manner, shear bands are observed in the film implying that the material is below its glass transition temperature. However, this does not agree with quasi-static experiments which show that the glass transition occurs at appreciably lower temperatures than those at which shear bands appear in the film. Evidently the glass-transition depends on shear rate as well as on other variables. This is well known in polymer physics: A specimen subjected to slow deformation flows in a viscoelastic or plastic manner; at high rates of deformation it behaves like an elastic (brittle) solid. The reason is that, in essence, the glass transition marks the stage where large-scale displacement of the molecules is restricted or inhibited and only small portions of the molecule can make very limited movements. High pressures, low temperatures, and high deformation rates are the major factors restricting molecular flow.

The formation of shear bands in a regime which appears to be above the glass transition temperature will undoubtedly attract further study. In particular, those working in E.H.L. will want to know if shear bands may be one mode of failure of E.H. films. For the material scientist the shear band process and the direction of shear demand explanations in terms of material and molecular mechanisms. It might even be possible by “trapping” reflections from the shear bands to apply Raman and similar spectroscopies and so determine the distorsional state of molecules in the shear band. In this important paper the authors have opened up a new and exciting field for both lubrication engineers and materials scientists.

Authors' Closure

The authors appreciate the kind comments by Dr. Tabor. Shear bands are observed in glassy polymers when the solid samples are examined after the shearing experiment. It is possible that they have not previously been observed in liquids above the glass transition temperature because of the great difficulty in observing a liquid film at very great shear stress and, of course the bands do not persist for long in the liquid. In any event, we have avoided the liquid/solid issue by modeling the process using the Mohr-Coulomb failure criterion, which provides the explanation for the variation of critical stress for band nucleation with pressure. While investigations into mechanically induced shear localization are ongoing, a very different type of shear band has been observed. For stress controlled high Brinkman number flow ($B_r > 3.5$), at sufficiently long times, a thermally induced band appears near the mid-plane of the film, similar to “adiabatic” shear bands observed during high-rate deformation in metals. See the accompanying figure.