
In their preface the authors state the purpose in writing this book has been to bring together much of the research into the nature of hemispheric asymmetries and, in providing such an overview, “to separate what is reasonably established as fact from what is purely speculative, without sacrificing the intrigue of either.” In this reviewer’s opinion, the authors have done just that.

This work is a scholarly, comprehensive, and provocative presentation of what is known, what is not known, and what can reasonably be hypothesized about hemispheric differences. The authors, furthermore, succeed in demonstrating how such investigations have led to important insights into the function of the brain in general.

The chronology of Left Brain, Right Brain moves from an historical overview of the clinical evidence for brain asymmetries to a concise look at split brain research, what such research tells us about the role of the cerebral commissures, about dominance and hemisphere capacity, visuospatial and language functions; followed by a review of studies of asymmetries in the normal brain, a provocative presentation of what is known and can be deduced about brain activity and the link of physiology and psychology.

The focus then moves on to cover discussions of left-handedness, sex differences, and laterality, learning disabilities, asymmetry and schizophrenia, and cultural and occupational differences in hemisphericity. The Appendix contains a concise, well-organized review of functional neuroanatomy and clinical disorders. Each chapter in this book is well referenced.

For the beginning student or for the professional whose exposure to neuropsychology has been limited, Left Brain, Right Brain is an intriguing introduction to the complexity of the human brain. For the advanced student or professional, this work is a valuable research resource. More significantly, however, the material is presented in such a way as to provoke those questions that must be pursued in our search for increased understanding about cognitive processes, the conscious-unconscious processes, and the multidimensions of human performance.

Gail S. Fidler, OTR, FAOTA


In their book Heininger and Randolph detail the conceptual model of human growth well known from the “Learning Tree’ workshops held throughout the country.

The book is divided into sections called concepts, each concept dealing with a different neurophysiological element. Concepts 1-9 deal with Ergotropic Trophotropic continuum; Exteroceptive Sensory Input; Vestibular Mechanism-Motion; Vestibular Mechanism-Position; Muscle Spindle and Golgi Tendon Organ; Kinesthetic Figure-Ground; Synaptic Activity; Space-Time Structure; and Readiness, respectively. A list of key words is given at the conclusion of each section that would assist in a student’s vocabulary growth, and a reference list of pertinent literature. There are also two appendices at the end of the text. The first appendix explains the use of and procedure for the administration and interpretation of the Neininger/Lewis “Integrated Motor Activities Scale.” The second contains two case studies that serve as good examples of professional treatment planning and documentation.

Because of the different conceptual and philosophical models, the reader is advised to read the preface of Neurophysiological Concepts in Human Behavior. Ignoring the preface will cost the reader valuable time in understanding how the three major analogies used with each concept—a tree, a cross-section of a tree trunk, and a pyramid, with their variety of labels—all work together toward an integrated understanding of development.

Concepts 1-6 are a good review of neurophysiological principles used in the daily treatment of the physically disabled and sensory integration populations. The concepts are extremely well written, with figures, diagrams, and pho-