Stability of Envelope Soliton

Nobuo YAJIMA

Research Institute for Applied Mechanics
Kyushu University, Fukuoka

April 26, 1974

In this decade, many works have been made to show that the stable pulse-like waves which are called solitons play an important role in the development of one-dimensional nonlinear wave phenomena. Several attempts have been proposed to describe nonlinear wave system as a superposition of solitons. The success of these attempts is dependent upon whether the soliton concerned is fully stable. It is known that the soliton is stable against a one-dimensional disturbance along the wave propagation. The two-dimensional stability has been studied by Kadomtsev and Petviashvili for a system which the Korteweg-de Vries equation applies. Zakharov has treated the two-dimensional stability of envelope solitons which display a remarkable property of permanence in a self-modulation process of nonlinear plane wave and has pointed out, by using a variational method, the possibility that envelope solitons can be unstable. In this paper we apply the reductive perturbation method to the two-dimensional stability problem and present a result more detailed than Zakharov's.

The complex envelope, \(\phi \), of a self-modulated plane wave propagating along the \(x \)-axis in a nonlinear dispersive medium is described by a nonlinear Schrödinger equation,

\[
i\phi_t + (\lambda'/2)\phi_{tt} + (\lambda/2k_0)\phi_\perp^2\phi + \gamma|\phi|^2\phi = 0,
\]

where the subscripts denote partial differentiations, \(k_0 \) the wavenumber of carrier wave, \(\lambda \) the group velocity, \(\lambda' \) its derivative with respect to \(k \), \(\gamma \) a constant giving the measure of nonlinearity, \(\xi = x - \lambda t \) and \(r_\perp = (0, y, z) \). By making use of the complex envelope \(\phi \), the modulated plane wave is expressed as \(\phi(\xi, r_\perp, t) \).

When \(\gamma' > 0 \), Eq. (1) has an envelope soliton solution vanishing at infinity:

\[
\phi = S_{\gamma} = A \sech \left((\gamma'/\lambda')^{1/2}A(\xi - VT) \right) \times \exp \left[i(\gamma' x - \omega_0 t) \right].
\]

Consider a two-dimensional perturbation such that \(A \) and \(V \) are slowly varying functions of \(r_\perp \) and \(t \). If the wavenumber and frequency of the perturbation are sufficiently small compared with those of the unperturbed soliton, \((\gamma'/\lambda')^{1/2}A \) and \(\gamma A^2/2 \), the perturbed solution is expected to be

\[
\phi = S_{\gamma} - \delta \phi.
\]
little different from the solution (2). It is then anticipated that
\[\phi(\xi, \rho, t) = A_0(A(\xi - \epsilon \xi_0), \rho, t) \times \exp(i\theta + i\xi \Omega/\lambda), \] (3)
\[\theta = \gamma A^2/2 - \epsilon \dot{v}^2/(2\lambda'), \quad \xi_0 t = \nu, \] (4)
\[A = A_0 + \epsilon a(\tau, \rho), \quad v = v(\tau, \rho), \] (5)
where \(\epsilon \) is a smallness parameter, \(\epsilon \ll 1 \), and \(\rho \) are the stretched variables to denote the slowness of \(t \)- and \(\rho \)-dependence of \(a \) and \(v \), \(\tau = \epsilon^{1/2} t \) and \(\rho = \epsilon^{1/2} \rho \). We solve Eq. (1) by substituting Eqs. (3) ~ (5), setting
\[g = g_0 + \epsilon g_1 + \epsilon^2 g_2 + \cdots \] (6)
and solving the sequence of equations corresponding to the successive powers of \(\epsilon \).

In the lowest order, we have
\[(\lambda'/\gamma) g_{0y} - 2 g_0 = 0, \] (7)
where \(\gamma = A(\xi - \epsilon \xi_0) \). Provided \(\gamma \lambda' > 0 \), this equation has a soliton solution vanishing at infinity, i.e.,
\[g_0 = \text{sech}(\gamma/\lambda')^{1/\gamma}, \] (8)
which is equivalent to \(S_v \) with \(V = 0 \) (compare with Eq. (2)).

Dividing \(g_1 \) into the real and imaginary parts, \(g_1 = R + iI \), we get, in the order \(\epsilon^{1/2} \),
\[(\lambda'/\gamma) R_{yy} - 6 g_0^2 R = (2/\gamma A^3) \{ \lambda^{-1} v \gamma g_0 + \epsilon^{1/2} (\lambda A^2/2k_0) P_\rho \dot{\xi} \dot{g}_0 \}, \] (9)
\[(\lambda'/\gamma) I_{yy} - I + 2 \epsilon g_0^2 I = - (2/\gamma A^3) \{ a_e(\dot{g}_0 + \gamma \dot{g}_0) + \epsilon^{-1/2} (\lambda A^2/2k_0) P_\rho \dot{\xi} \dot{g}_0 \}. \] (10)

We now impose that \(R \) and \(I \) are bounded at \(\xi = \pm \infty \). Equation (9) is multiplied by \(g_{0y} \) and integrated by parts with \(\gamma \) over \((-\infty, \infty) \). Taking into account Eq. (10) and differentiating the equation so obtained with respect to \(t \), we have
\[\nu_{yy} = (\gamma A^3/3k_0) P_\rho \dot{v} = 0. \] (11)

Applying the same procedure to Eq. (10) but replacing \(g_{0y} \) by \(g_0 \), we then obtain
\[a_{ye} + (\lambda A^3/3k_0) P_\rho \dot{v} = 0. \] (12)

It is noted that Eqs. (11) and (12) are nothing but the condition for the boundedness of \(R \) and \(I \) at \(\xi = \pm \infty \).

Equations (11) and (12) indicate that for \(\gamma > 0 \) the soliton is stable with regard to a perturbation with \(v \neq 0 \) and \(a = 0 \) (this mode is called "flutter") and unstable against a perturbation with \(v = 0 \) and \(a \neq 0 \) ("granulation"). This case \((\gamma > 0) \) corresponds to the case of positive dispersion, \(\lambda' > 0 \), since the envelope soliton solution is possible only for \(\gamma \lambda' > 0 \). Whilst, in a medium with negative dispersion \(\gamma < 0 \), the soliton exhibits a flutter-type of instability and is stable for granulations. It is concluded that the envelope soliton is, in general, not stable.