Duality Constraints and Representation Mixings in Light-Like Chiral Algebra

Takahisa KUROIWA, Koichi YAMAWAKI* and Taichiro KUGO*

Department of Physics, Kyushu University, Fukuoka
*Department of Physics, Kyoto University, Kyoto

(Received April 12, 1974)

Within the framework of light-like chiral algebra $SU(3)_1 \times SU(3)_1$, the mixing scheme for meson resonances are investigated. The mixing angles of representations are determined from duality constraints with an assumption about the variation of Regge residues. In particular, equal-weight mixing between the pseudoscalar and axial vector mesons is obtained. All the observed pionic couplings are fitted well with one parameter for each helicity. Consistency of our results with mass relations of Weinberg's and others is also studied.

§ 1. Introduction

Recently Ida1 has investigated possible chiral properties of hadron resonances and emphasized the importance of light-like charges2 in hadron classification.

The success of the PCAC hypothesis in the Goldberger-Treiman and the Adler-Weisberger relations can be most naturally understood by chiral symmetry of fundamental dynamics and its Nambu-Goldstone realization. In this case, for ordinary space-like charges Q_a, Q_{sa} (in the $SU(3)$ symmetry limit) one obtains

$$Q_a |0\rangle = 0 \quad \text{but} \quad Q_{sa} |0\rangle \neq 0.$$

So physical hadron states cannot be assigned to simple representations of the space-like chiral charge algebra. On the contrary, light-like charges annihilate the vacuum,5

$$\tilde{Q}_a |0\rangle = \tilde{Q}_{sa} |0\rangle = 0.$$

In other words, the vacuum is a singlet of light-like chiral charge algebra $SU(3)_1 \times SU(3)_1$. So physical hadron states may be assigned to simple representations of this algebra. On the other hand, \tilde{Q}_{sa} does not commute with P^2 and J^2 even in the chiral limit because of the spontaneous breaking of chiral symmetry.1 Therefore hadron resonances are not generally irreducible under $SU(3)_1 \times SU(3)_1$, that is, representation mixings occur. If we can determine this mixing pattern and mixing angles, which give mass relations and axial couplings (through PCAC hypothesis), then we may have a clue to make the structure of hadron dynamics clear.

Here we note the conceptual difference between the approach of ours and that of Melosh and others.6 Melosh assumes from the observed hadron spectrum...
Duality Constraints and Representation Mixings

that there exist $SU(6)_w$ generators W_i which approximately commute with the Hamiltonian, that is, hadrons of each $SU(6)_w$ multiplet are approximately degenerate. On the contrary, in our scheme mass splitting between p and n, for instance, is unavoidable and mass relations and π-couplings are to be determined simultaneously.

Duality and the absence of exotic resonances require that the imaginary parts of scattering amplitudes in exotic channels be strongly suppressed. This requirement relates various vertices to each other. If we adopt a specific classification and mixing pattern, axial couplings are expressed in terms of mixing angles. Thus, duality constraints give us information on the mixing angles. In this paper we impose duality constraints on meson-meson scattering and study the mixing of light-like chiral irreducible representations.

In § 2 we briefly review the basic concepts and mixing patterns in chiral classification of mesons. Duality constraints and their consequences are given in § 3. Comparison with experiment and discussions are made in § 4. Appendices I, II and III contain light-like chiral expressions of meson states and equations of duality constraints for meson-meson scattering, respectively.

§ 2. Chiral classification and mixing patterns for mesons

For the chiral assignments and mixing patterns, we adopt the following scheme studied in detail by Ida (Fig. 1).

This scheme is based on the concept of “bloc”. Examples for it are given by $(P, S, V, A^{(+)})$, $(A^{(-)}, V', T, PT^{(-)})$ for $J_z=\lambda=0$ and $(V, A^{(+)}, A^{(-)}, V')$, $(T, PT^{(-)}, PT^{(+)}, T')$ for $\lambda=1$.

The concept of bloc stems from the following observations.

1) The one-particle saturation of the Adler-Weisberger sum rule indicates:

i) Only a few particles strongly couple to the nucleon through pion emission. They lie near each other on the $J-m^2$ plane.

Fig. 1. A schematic diagram of the scheme we adopt for helicities 0 and 1.
ii) Only a few partial wave (especially \(l=0 \) and \(l=1 \)) have dominant contributions.

2) Higher-lying blocs can be considered as Regge recurrences of the lowest one.

It should be noted that a bloc of physical particles approximately corresponds to a complete set of nonexotic chiral multiplets \((1+8,1), (1,1+8), (3,3^*)\) and \((3^*,3)\). Further, the bloc consists of two types of partners; one is chiral-type partner such as \(P \) and \(S ((3,3^*)+(3^*,3)) \), which is connected through \(l=0 \) \(\pi \)-transition, and the other is "\(SU(6) \)"-type partner such as \(P \) and \(V ((8,1)+(1,8)) \), which is connected through \(l=1 \) \(\pi \)-transition. We consider only the lowest two blocs with alternative signatures, neglecting mixings with higher blocs for simplicity.* Figure 1 shows all the possible mixings among multiplets with the same unitary spin and the same charge parity, and further for the case \(\lambda=0 \), with the same natural parity.

Physical states are expressed in terms of the mixing angles as given in Appendix I.

§ 3. Duality constraints

Here we consider the duality constraints on the \(u \)-channel helicity amplitudes for meson-meson scattering. With an exotic quantum number in the \(s \)-channel, we get a relation between \(u \)-channel Reggeon trajectories and their residues. (Conditions on the \(t \)-channel exchange trajectories are not imposed here because vertices without pseudoscalar meson cannot be evaluated through PCAC.)

The constraints are written as**

\[
\sum_i \tau_i \beta_i(u) s^{\alpha_i} = 0, \tag{3.1}
\]

where \(\alpha_i(u) \) stands for the \(i \)-th \(u \)-channel Regge trajectory, and \(\tau_i \) for its signature. \(\beta_i(u) \) is the Regge residue which we assume is written as

\[
\beta_i^A(u) = \frac{|X(\lambda)_{n\rightarrow AP_a}|^2}{\beta_{i,\lambda}(u_n)} \cdot \bar{\beta}_{i,\lambda}(u) \cdot K_a^A(u), \tag{3.2}
\]

where

\[
|X(\lambda)_{n\rightarrow AP_a}|^2 = \frac{\langle n | \bar{Q}_a | A \rangle}{(2\pi)^{2p^+\delta^{(p)}}(\Delta^+ - \Delta^-)} \delta(p^+ - p_a^+) \delta^2.
\]

\(A \) stands for the external particle, \(P_a \) for the pseudoscalar octet, \(n \) for the pole \(\alpha_i(u_n) \) and \(K_a^A(u) \) for the kinematic factor** which depends on \(u \) and on external particle mass. Clearly Eq. (3.2) is a simple form of continuation from

* These higher blocs consist of uncertain resonances and we suppose the mixings with them to be weak.

** We may take the form of \(K_a^A(u) \) as \((u-m^2)/F_a^2\) so that \(\beta_i(u_n) = (u_n-m^2)/F_a^2 \times |X(\lambda)_{n\rightarrow AP_a}|^2 \) is guaranteed at the pole position.
Duality Constraints and Representation Mixings

the pole position where \(\beta_{i,\lambda}^A(u_n) \) is expressed as

\[
\beta_{i,\lambda}^A(u_n) = |X(\lambda)_{\pi \rightarrow A P_a}|^2 K_a A^A(\mu).
\]

The essential point of our assumption is that the factor \(\bar{\beta}_{i,\lambda}(u) \) is independent of the external particle.*

Duality constraint (3.1) combined with Eq. (3.2), leads to the following equation for the exchange degenerate trajectories \(\alpha_i \) and \(\alpha_j \):

\[
\frac{|X(\lambda)_{\pi \rightarrow A P_a}|^2}{\bar{\beta}_{i,\lambda}(u_n)} = \frac{|X(\lambda)_{\pi \rightarrow A P_a}|^2}{\bar{\beta}_{f,\lambda}(u_m)},
\]

(3.3)

where \(\bar{\beta}_{i,\lambda}(u) = \bar{\beta}_{j,\lambda}(u) \).

3.1 The case \(\lambda = 0 \)

1) \(P_\rho P_g \rightarrow P_\rho P_g \)

We present the constraints in \(\pi \pi \rightarrow \pi \pi \), \(K \pi \rightarrow K \pi \) and \(K K \rightarrow K K \) in Appendix II. From Eqs. (A.2) and (A.4), we get

\[
C^{K\pi-K\pi}_0 \cos \theta \cos \beta = \sin \theta \sin \phi,
\]

\[
C^{p-A_1}_0 \cos \theta \cos \beta = \sin \theta \sin \phi,
\]

(3.4)

where \(C^{p-A_1}_0 \) and \(C^{K\pi-K\pi}_0 \), etc., are defined by

\[
C^{p-A_1}_0 = \frac{\bar{\beta}_{d,\lambda}(u = m_{\rho})}{\bar{\beta}_{p,\lambda}(u = m_{\rho})}
\]

and so on. From Eq. (3.4) we get

\[
C^{K\pi-K\pi}_0 = C^{p-A_1}_0 = C^{\pi-\pi}_0.
\]

(3.5)

In Eq. (A.1) we require that \(f' \) decouples from \(\pi \pi \),** then

\[
\tan \theta \pi = \frac{1}{\sqrt{2}} \sin \phi'.
\]

(3.6)

Substituting Eq. (3.6) into Eq. (A.1), we get from the consistency with Eq. (3.4)

\[
\sin^2 \theta \pi = \frac{1}{3}.
\]

(3.7)

From Eqs. (3.6) and (3.7) we get

\[
\sin^2 \phi' = \sin^2 \phi.
\]

(3.8)

*) Although in general the quantity at the pole

\[
\frac{|X(\lambda)_{\pi \rightarrow A P_a}|^2}{\beta_{i,\lambda}(u_n)/K_a A^A(\mu)}
\]

is dependent on \(A \) and on the trajectories \(i \) and \(j \). Duality constraint eliminates the dependence of it on the latter. With our assumption of \(A \)-independence we get Eq. (3.3).

**) If we accept the fact that \(f' \)-trajectory is not degenerate with \(\rho \) \(f \) trajectory, the very duality constraint (A.1) requires the decoupling of \(f' \) from \(\pi \).
Further, if we assume $\phi - f'$ and $\omega - f$ exchange degeneracies (EXD), then
\[\tan^2 \theta_T = \frac{1}{2}. \] (3.9)

2) $A_h^{(+)} P_h \rightarrow A_h^{(+)} P_h$

Constraints for this case are obtained by replacing $\cos \theta$ and $\sin \theta$ with $-\sin \theta$ and $\cos \theta$, respectively, in the equations for $P_h P_h \rightarrow P_h P_h$. Thus we get
\[C_0^{y-T} \sin^2 \theta \cos^2 \beta = \cos^2 \theta \sin \phi. \] (3.10)

From Eqs. (3.4) and (3.10), the following results are obtained:
\[\sin^2 \theta = \cos^2 \theta = \frac{1}{2}, \] (3.11)
\[C_0^{y-T} \cos^2 \beta = \sin \phi. \] (3.12)

except for unacceptable ones; $\phi = 0$ and $(C_0^{y-T} = 0$ or $\beta = \pi/2)$.

3) $V_6 P_h \rightarrow V_6 P_h$

In this case we treat the unnatural parity exchange. We present the constraints in Appendix II.

From Eq. (A.7) and assuming $\pi - B$ EXD and $A_1 - (PT)_1$, EXD, we obtain
\[C_0^{x-B} \cos^2 \beta \cos^2 \theta = \sin^2 \beta \sin \alpha, \]
\[C_0^{A_1 -(PT)_1} \cos^2 \beta \cos^2 \theta = \sin^2 \beta \cos \alpha. \]

Putting $\cos^2 \theta = \frac{1}{2}$, we get
\[\tan^2 \beta = \frac{1}{2}(C_0^{x-B} + C_0^{A_1 -(PT)_1}), \] (3.13)

and
\[\tan^2 \alpha = \frac{C_0^{x-B}}{C_0^{A_1 -(PT)_1}} \] (3.14)

if $\beta \neq 0$. In the case $\beta = 0$, the above equations are still valid independent of the value of α, so long as $C_0^{x-B} = C_0^{A_1 -(PT)_1} = 0$.

In Eq. (A.5), if we assume that H' and $(PT)_1'$ decouple from $\rho \pi$ (and that $\pi - H$ and $A_1 - (PT)_1$ trajectories are exchange-degenerate), we would obtain the ideal mixings for $A^{(-)}$ and PT, but it seems rather doubtful.

3.2 The case $\lambda = 1$

We consider scattering of $V_6 P_h \rightarrow V_6 P_h$ and $A_h^{(z)} P_h \rightarrow A_h^{(z)} P_h$. Constraints on $\rho \pi \rightarrow \rho \pi$, $K^* \pi \rightarrow K^* \pi$, $A_\pi \rightarrow A_\pi$, $K^*_\alpha \pi \rightarrow K^*_\alpha \pi$, and $K^*_\beta \pi \rightarrow K^*_\beta \pi$ are presented in Appendix III.

From Eq. (A.9), we get
\[C_1^{K^*-K^*} \cos^4 \phi^{(-)} = \sin^2 \phi^{(-)} \sin^2 \phi^{(+)}. \] (3.15)

If we assume in Eq. (A.8) that ϕ decouples from $\rho \pi$, then
\[\tan \theta_T = \frac{1}{\sqrt{2}} \cos \phi^{(-)}. \]
Substituting this equation into Eq. (A·8), we have, from the consistency with Eq. (3·15),

\[C_1^{K^*-K^{**}} = C_1^{*-\Delta} = C_1^{Y^-T}, \]

\[\sin^2 \theta_T = \frac{3}{5}. \]

Thus

\[\cos^2 \phi^{(-)} = \cos^2 \phi^{(-)'}. \] (3·16)

From Eq. (A·12), we get

\[C_1^{K^*-K^{**}} \cos^2 \phi^{(+)} \sin^2 \phi^{(-)} = \sin^2 \phi^{(+)} \cos^2 \phi^{(+)}. \] (3·17)

From Eqs. (3·15) and (3·17), the following results are obtained:

\[\cos^2 \phi^{(-)} = \sin^2 \phi^{(-)} = \frac{3}{5}, \] (3·18)

\[\sin^2 \phi^{(+)} = \frac{4}{5} C_1^{K^*-K^{**}}, \] (3·19)

except for trivial ones; \(\phi^{(+)} = \pi/2 \) and \(C_1^{K^*-K^{**}} \cos^4 \phi^{(-)} = \sin^4 \phi^{(-)}. \)

If we require in Eq. (A·10) that \(f' \) decouples from \(\pi \pi \), then from the consistency with Eq. (3·17), we get

\[\sin^2 \theta_T = \frac{1}{3}, \]

\[\cos^2 \phi^{(+)} = \cos^2 \phi^{(+)'}. \] (3·20)

§ 4. Comparison with experiment and discussion

We now summarize our results obtained above:

\[\sin^2 \theta = \cos^2 \theta = \frac{3}{5}, \] (4·1)

\[\sin^2 \phi^{(-)} = \cos^2 \phi^{(-)} = \frac{3}{5}, \] (4·2)

\[\sin^2 \psi = C_\phi^{Y^-T} \cos^2 \beta, \] (4·3)

\[\tan^2 \beta = \frac{1}{2} (C_\phi^{\Delta^-} + C_\phi^{\Delta^+ - 2\pi}), \] (4·4)

\[\tan^2 \alpha = \frac{C_\phi^{\Delta^- - 2\pi}}{C_\phi^{\Delta^+}}, \] (only when \(\beta \neq 0 \)) (4·5)

\[\sin^2 \phi^{(+)} = \frac{1}{2} C_1^{Y^-T}. \] (4·6)

Also we have got nonet type mixings

between \(T \) and \(S \); \(\phi = \phi' \) for \(\lambda = 0 \),

\[\begin{cases} V \text{ and } A^{(-)}; & \phi^{(-)} = \phi^{(-)'} \ \\ T \text{ and } A^{(+)}; & \phi^{(+)} = \phi^{(+)'} \end{cases} \] for \(\lambda = 1 \).

Equation (4·1), which is the most important result of our investigation, leads to Weinberg's mass relation\(^9\) and to correct \(\rho \rightarrow 2\pi \) coupling in the case \(\beta \sim 0 \). In fact, when \(\beta = 0 \), the equality of the matrix elements of mass operator \(P^2 \)
T. Kuroiwa, K. Yamawaki and T. Kugo

\[\langle (8, 1)^+ \vert P^2 \vert (8, 1)^+ \rangle = \langle (8, 1)^- \vert P^2 \vert (8, 1)^- \rangle \]

is written as

\[m_Y^2 = \cos^2 \theta \cdot m_\pi^2 + \sin^2 \theta \cdot m_\phi^2 \quad (4.7) \]

Using our result (4.1), we find that Eq. (4.7) is just the well-known mass relation of Weinberg. Further the coupling constant \(f_{\rho \pi \pi} \) is given through PCAC as

\[\frac{f_{\rho \pi \pi}}{m_\rho} = \frac{1}{F_\pi^2} \cos \theta \quad (4.8) \]

This equation (4.8) with our result \(\cos \theta = \frac{1}{2} \) coincides with the KSFR relation which is well satisfied experimentally.

Equation (4.2) predicts that

\[g_{\rho \pi \pi} = \frac{2}{F_\pi} \cos \phi^{(*)} = \frac{1}{F_\pi} = 10.5 \text{ GeV}^{-1} \quad (4.9) \]

This rather deviates from the semi-experimental value \((15 \pm 2 \text{ GeV}^{-1})\) which is obtained from \(\omega \rightarrow \pi^0 + \gamma \) through the assumption of vector meson dominance.

Equations (4.3) \(\sim (4.6) \) are dependent on the \(C \)'s. We consider the following two special cases.

(I) \(C \) is a universal constant independent of helicity and exchanged trajectories:

\[C^{\rho \rightarrow \pi} = C^{\rho \rightarrow \pi} = C^{\rho \rightarrow \pi} = C^{\rho \rightarrow \pi} (\lambda = 0, 1) \]

Then Eqs. (4.3) \(\sim (4.6) \) can be rewritten as

\[C = \tan^2 \beta = \tan^2 \phi = 2 \sin^2 \phi^{(*)} \quad (4.10) \]

\[\sin^2 \alpha = \cos^2 \alpha = \frac{1}{2} \quad (4.11) \]

All transitions are expressed by the single parameter \(C \) as presented in Table I. Further, when \(C \) is set as

\[C = \frac{\vert X(0)_{\rho \rightarrow \pi} \vert^2}{\vert X(0)_{\rho \rightarrow \pi} \vert^2} \sim 0.2 \quad (4.12)** \]

all the pion couplings are evaluated and compared with experiments in Table I. Our results for \(\lambda = 0 \) are fairly well, though they, as will be explained in Case II, rather deviate from experiments for \(\lambda = 1 \). Even for \(\lambda = 0 \), this Case I meets with a difficulty on the mass relation of Weinberg's type, which is written as

\[^* \langle (8, 1)^+ \rangle \text{ is the eigenstate of reflection operator:} \]

\[\langle (8, 1)^+ \rangle = \frac{1}{\sqrt{2}} \{ \langle (8, 1)^+ \rangle \pm \langle 1, 8 \rangle \} \]

\[^** \langle X(\lambda)_{\pi \rightarrow \pi} \rangle \text{ is related to the decay width } \Gamma_{\pi \rightarrow \pi} \text{ as follows:} \]

\[\Gamma_{\pi \rightarrow \pi} = \frac{1}{2 \pi F_\pi^2} \left(\frac{p^+}{p^+} \right)^{\lambda(\lambda - 1)} \frac{1}{2J_\pi + 1} \frac{\lambda^2}{2m_\pi} \vert X(\lambda)_{\pi \rightarrow \pi} \vert^2 \]

where \(F_\pi = 94 \text{ MeV} \) and \(p^* \) is the pion momentum in the light-like limit,

\[p^* = \frac{m_\pi^2 - m_\pi^2}{2m_\pi} \]
\[m_F^2 \cos^2 \beta + m_F^2 \sin^2 \beta = m_F^2 \cos^2 \theta + m_A^2 \sin^2 \theta = \frac{1}{2} (m_F^2 + m_A^2). \] (4.13)

When \(\beta = 0 \), this is of course reduced to Eq. (4.7). The left-hand side with

Table I. Predictions for the matrix elements \(|X(0)|^2 \) and \(|X(1)|^2 \) together with corresponding expressions in terms of mixing angles and experimental data.

a) The value cited from Ref. 1).

b) The value corresponding to the total decay width of \(\delta \) in Ref. 8).

c) World average cited in Ref. 9).

Transitions	\(X(0)	^2 \)	\(X(1)	^2 \)		
\(V \to P \)	\(\sin^2 \theta \cos^2 \beta \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.25 \)	\(0.25 \)	\(0.25 \)	\(0.50^{\text{a)} \)
\(K^* \to K \pi \)	\(\frac{1}{2} \sin^2 \theta \cos^2 \beta \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.14 \)	\(0.14 \)	\(0.13 \)	\(0.10^{\text{a)} + 0.05^{\text{b)} } \)
\(T \to P \)	\(\sin^2 \theta \sin^2 \psi \)	\(\frac{1}{3} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.42 \)	\(0.42 \)	\(0.50 \)	\(0.50 \)
\(A^{(-)} \to S \)	\(\sin^2 \theta \)	\(\frac{1}{3} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.083 \)	\(0.083 \)	\(0.08 \)	\(0.08^{\text{a)} } \)
\(A^{(-)} \to V \)	\(\sin^2 \theta \cos^2 \beta \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.042 \)	\(0.042 \)	\(0.050 \)	\(0.045^{\text{a)} } \)
\(B \to \omega \phi \)	\(\sin^2 \theta \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} (1-C^{\tau-r}) \)	\(0.14 \)	\(0.14 \)	\(0.14 \)	\(0.14 \)

\(\lambda = 1 \)

Transitions	\(X(0)	^2 \)	\(X(1)	^2 \)			
\(V \to V \)	\(\cos^2 \phi^{(-)} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(0.25 \)	\(0.25 \)	\(0.25 \)	\(0.50^{\text{a)} } \)	
\(T \to V \)	\(\sin^2 \phi^{(-)} \sin^2 \phi^{(-)} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(0.050 \)	\(0.050 \)	\(0.050 \)	\(0.050^{\text{a)} } \)	
\(A^{(-)} \to V \)	\(\sin^2 \phi^{(-)} \cos^2 \phi^{(-)} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)	\(0.45 \)	\(0.45 \)	\(0.45 \)	\(0.45 \)	
\(A^{(-)} \to V \)	\(\sin^2 \phi^{(-)} \cos^2 \phi^{(-)} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(\frac{1}{4} \)	\(0.25 \)	\(0.25 \)	\(0.25 \)	\(0.25 \)	\(0.22^{\pm 0.02^{\text{a)} } \)
$m_r = 1.6$ GeV gives ~ 0.92 (GeV)2, while the right-hand side is ~ 0.62 (GeV)2. The discrepancy is obviously due to the largeness of $\sin^2 \beta$. Weinberg's mass relation is consistent with Eq. (4.13) only when $\sin^2 \beta \sim 0$. So we next consider the case $\beta = 0$.

(II) The case $\beta = 0$.

With λ-independent $C^{\nu-T} (= C_{\nu-T} = C_{\nu})$ for simplicity, Eqs. (4.3), (4.4) and (4.6) are rewritten as

$$C^{\nu-T} = \sin^2 \phi = 2 \sin^2 \phi^{(+)} , \quad \beta = C_{\nu-T} - \lambda \sin^2 \phi^{(+)} = 0 . \quad (4.14)$$

α is not determined because of Eqs. (4.5) and (4.15). So there remain two parameters $C^{\nu-T}$ and α. The pionic couplings are presented in Table I. As for the $\lambda = 0$ meson decays, this Case II solution shows nice agreements with the data, though there is not much to choose between Case II and Case I. Firstly, as stated in the beginning of this section, the so-called KSFR6 relation holds in Case II. Therefore the predicted reduced matrix elements for decays $\rho \to \pi \pi$, $K^* \to K \pi$ agree with experiment as follows:

$$|X(0)_{\rho_{ww}}|^2 = 0.50 \text{ exp.} \quad (4.16)$$

$$|X(0)_{K^*_{\pi\pi}}|^2 = 0.23 \text{ exp.} \quad (4.17)$$

Secondly, if $C^{\nu-T} = 0.2$ is taken as input, $T \to P$ decays ($f \to \pi \pi$, $A_2 \to \eta \pi$, $K_N \to K \pi$) are fitted within 10% error. Thirdly for the decay $\delta \to \eta \pi$

$$|X(0)_{\delta_{ww}}|^2 = 0.13 \quad (4.18)$$

is predicted, while the experiment gives the value

$$|X(0)_{\delta_{ww}}|^2 = 0.10^{+0.08}_{-0.05} \quad (4.19)$$

if δ decays only into $\eta \pi$. This is consistent with the prediction (4.18). Finally the decay $B \to \omega \pi$ needs some comments. The world average and BNL/LBL data6 show appreciable amount of the $\lambda = 0$ amplitude ($|X(0)_{B_{ww}}|^2_{\text{world average}} \sim 0.064 \pm 0.006$) and they seem to prefer the Case I solution ($|X(0)_{B_{ww}}|^2 = 0.083$), while in Weizmann's data10 with a fairly small $\lambda = 0$ amplitude, we have $|X(0)_{B_{ww}}|^2 \sim 0.064$ (and $|X(1)_{B_{ww}}|^2 \sim 0.28$), which favours Case II.

Also as stated in the beginning, Weinberg's mass relation holds in this Case II solution. Further the strong suppression of $\rho^+ \to \pi \pi \pi \pi$ mode compared with $\rho^+ \to \pi \pi \pi \pi \pi$ is consistent with the small β. Therefore the Case II solution nicely agrees with experimental values of masses and π-couplings for the case $\lambda = 0$.

Finally we comment on some difficulties for both Cases I and II we have in the case $\lambda = 1$. If we wish to fit all the couplings of $\omega \to \rho \pi$, $A_2 \to \rho \pi$, $K_N \to K^* \pi$ and $B \to \omega \pi$ together with the mass relation1

$$m_r \sin^2 \phi^{(-)} + m_2 \cos^2 \phi^{(-)} = m_r \sin^2 \phi^{(+)} + m_2 \cos^2 \phi^{(+)} , \quad (4.20)$$

m_2 \sin^2 \phi^{(-)} + m_2 \cos^2 \phi^{(-)} = m_r \sin^2 \phi^{(+)} + m_2 \cos^2 \phi^{(+)} , \quad (4.20)$$
Duality Constraints and Representation Mixings

the values\(^{\text{1)}}\)

\[
\begin{align*}
\sin^2 \phi^{(-)} &\sim 0.27, \\
\sin^2 \phi^{(+)} &\sim 0.29
\end{align*}
\]

\((4\cdot21)\)

\((4\cdot22)\)

are preferable. On the other hand our results are

\[
\begin{align*}
\sin^2 \phi^{(-)} &= \frac{1}{2}, \\
\sin^2 \phi^{(+)} &= \frac{C_{\Lambda-1}^{V}\Lambda-T}{2} = 0.1.
\end{align*}
\]

\((4\cdot23)\)

\((4\cdot24)\)

Then as for the mass relation \((4\cdot20)\), the left-hand side gives \(\sim 1.06\), while the right-hand side with the value \(\sin^2 \phi^{(+)} = 0.1\) \(\left(C_{\Lambda-1}^{V}\Lambda-T = 0.2\right)\) is \(\sim 1.25\), showing a discrepancy of about 20%. As for the decays \(\omega \rightarrow \rho\pi\), \(\Lambda_1 \rightarrow \rho\pi\), \(K_N \rightarrow K^*\pi\), our predictions are 40\(\sim\)50\% smaller than the experimental width as shown in Table I. These discrepancies can be reduced to the ones between the values \((4\cdot21)\), \((4\cdot22)\) and \((4\cdot23)\), \((4\cdot24)\). The discrepancy between \((4\cdot21)\) and \((4\cdot23)\) or in general the deviations of our solutions from experiments, if taken seriously, may be due to our neglect of mixings with other states, e.g., \(V', PT^{(\pm)}, T'\) and so on. Another possibility is to take the dependence of \(\beta_N(\mu)\) on the external particles into consideration, but it will reduce our nice predictions for \(\lambda = 0\) to a mere accident.

Acknowledgements

We would like to express our sincere thanks to Professor M. Ida for encouraging and helpful discussions and for reading the manuscript. We are grateful to Professor S. Otsuki for encouragement. We thank the members of particle theory groups of Kyoto and Kyushu Universities for discussions.

Appendix I

Mixing angles between octets are as shown in Fig. 1. Those with primes are between singlets. Octet-singlet mixing is denoted by \(\theta\); e.g., \(\theta_V\) for vector nonet.

1) \(\lambda = 0\)

\[
\begin{align*}
V_s: \quad &\cos \beta |(8, 1)^+\rangle + \sin \beta |(3, 3^*)_s^{+}\rangle \\
V_1: \quad &\cos \beta' |(1, 1)^+\rangle + \sin \beta' |(3, 3^*)_s^{+}\rangle \\
P_s: \quad &\cos \theta |(8, 1)^-\rangle + \sin \theta |(3, 3^*)_s^-\rangle \\
P_1: \quad &\cos \theta' |(1, 1)^-\rangle + \sin \theta' |(3, 3^*)_s^-\rangle \\
A_s^{(+)}: \quad &-\sin \theta |(8, 1)^-\rangle + \cos \theta |(3, 3^*)_s^-\rangle
\end{align*}
\]
\[A_i^{(+)}: -\sin \theta' |(1, 1)^> + \cos \theta' |(3, 3^*)_1^> \]
\[S_0: \cos \phi |(3, 3^*)_9^> + \sin \phi |(8, 1)^> \]
\[S_i: \cos \phi' |(3, 3^*)_9^> + \sin \phi' |(1, 1)^> \]
\[T_s: -\sin \phi |(3, 3^*)_9^> + \cos \phi |(8, 1)^> \]
\[T_1: -\sin \phi' |(3, 3^*)_9^> + \cos \phi' |(1, 1)^> \]
\[A_s^{(-)}: \cos \alpha |(8, 1)^> - \sin \alpha |(3, 3^*)_h^- \]
\[A_i^{(-)}: \cos \alpha' |(1, 1)^> + \sin \alpha' |(3, 3^*)_h^- \]
\[PT_s: -\sin \alpha |(8, 1)^> + \cos \alpha |(3, 3^*)_h^- \]
\[PT_1: -\sin \alpha' |(1, 1)^> + \cos \alpha' |(3, 3^*)_h^- \]
\[V_s': -\sin \beta |(8, 1)^> + \cos \beta |(3, 3^*)_h^- \]
\[V_1': -\sin \beta' |(1, 1)^> + \cos \beta' |(3, 3^*)_h^- \]

2) \(\lambda = 1 \)

\[V_s: \cos \phi^{(-)} |(3, 3^*)_h^> + \sin \phi^{(-)} \frac{1}{\sqrt{2}} [(8, 1)^> - |(1, 8)^>] \]
\[V_1: \cos \phi^{(-)} |(3, 3^*)_h^> + \sin \phi^{(-)} \frac{1}{\sqrt{2}} [(1, 1)^> - |(1, 1)^>] \]
\[A_s^{(-)}: -\sin \phi^{(-)} |(3, 3^*)_h^> + \cos \phi^{(-)} \frac{1}{\sqrt{2}} [(8, 1)^> - |(1, 8)^>] \]
\[A_i^{(-)}: -\sin \phi^{(-)} |(3, 3^*)_h^> + \cos \phi^{(-)} \frac{1}{\sqrt{2}} [(1, 1)^> - |(1, 1)^>] \]
\[T_s: \cos \phi^{(+)} |(3, 3^*)_h^> + \sin \phi^{(+)} \frac{1}{\sqrt{2}} [(8, 1)^> + |(1, 8)^>] \]
\[T_1: \cos \phi^{(+)} |(3, 3^*)_h^> + \sin \phi^{(+)} \frac{1}{\sqrt{2}} [(1, 1)^> + |(1, 1)^>] \]
\[A_s^{(+)}: -\sin \phi^{(+)} |(3, 3^*)_h^> + \cos \phi^{(+)} \frac{1}{\sqrt{2}} [(8, 1)^> + |(1, 8)^>] \]
\[A_i^{(+)}: -\sin \phi^{(+)} |(3, 3^*)_h^> + \cos \phi^{(+)} \frac{1}{\sqrt{2}} [(1, 1)^> + |(1, 1)^>] \]

Appendix II

1) \(P_sP_s \rightarrow P_sP_s \)

\[\pi \pi \rightarrow \pi \pi : \]

\[\tau \tau R_\beta \frac{1}{\beta(u_\tau)} \sin^2 \theta \left(\sqrt{\frac{2}{3}} \cos \theta \sin \phi' + \sqrt{\frac{1}{3}} \sin \theta \sin \phi \right) + \tau \tau R_\beta \frac{1}{\beta(u_\tau)} \]
\[
\times \sin^2 \theta \left(-\sqrt{\frac{2}{3}} \sin \theta' \sin \phi' + \sqrt{\frac{1}{3}} \cos \theta' \sin \phi \right)^2
\]

\[
+ \tau_\rho R_\rho \frac{1}{\tilde{\beta}(u_\rho)} \cos^2 \theta \cos^2 \beta = 0.
\] (A·1)

Kπ → Kπ:

\[
\tau_K R_K \frac{1}{\tilde{\beta}(u_K)} \cos^2 \theta \cos^2 \beta + \tau_K R_K \frac{1}{\tilde{\beta}(u_{K^*})} \sin^2 \theta \sin^2 \phi = 0.
\] (A·2)

KK → KK:

\[
L_u = 0
\]

\[
\tau_\rho R_\rho \frac{1}{\tilde{\beta}(u_\rho)} \cos^2 \theta \cos^2 \beta + \tau_A R_A \frac{1}{\tilde{\beta}(u_A)} \sin^2 \theta \sin^2 \phi = 0.
\] (A·4)

2) \(V_u P_\rho \to V_u P_\rho\)

\[
\tau_\rho R_\rho \frac{1}{\tilde{\beta}(u_\rho)} \cos^2 \beta \cos^2 \theta + \tau_A R_A \frac{1}{\tilde{\beta}(u_A)} \cos^2 \beta \sin^2 \theta
\]

\[
+ \tau_H R_H \frac{1}{\tilde{\beta}(u_H)} \left(\sqrt{\frac{2}{3}} \cos \theta_H \sin \alpha' + \sqrt{\frac{1}{3}} \sin \theta_H \sin \alpha \right)^2 \sin^2 \beta
\]

\[
+ \tau_H R_H \frac{1}{\tilde{\beta}(u_H)} \left(-\sqrt{\frac{2}{3}} \sin \theta_H \sin \alpha' + \sqrt{\frac{1}{3}} \cos \theta_H \sin \alpha \right)^2 \sin^2 \beta
\]

\[
+ \tau_{(P\rho)} R_{(P\rho)} \frac{1}{\tilde{\beta}(u_{(P\rho)})} \left(\sqrt{\frac{2}{3}} \cos \theta_{(P\rho)} \cos \alpha' + \sqrt{\frac{1}{3}} \sin \theta_{(P\rho)} \cos \alpha \right)^2 \sin^2 \beta
\]

\[
+ \tau_{(P\rho)} R_{(P\rho)} \frac{1}{\tilde{\beta}(u_{(P\rho)})} \left(-\sqrt{\frac{2}{3}} \sin \theta_{(P\rho)} \cos \alpha' + \sqrt{\frac{1}{3}} \cos \theta_{(P\rho)} \cos \alpha \right)^2 \sin^2 \beta = 0.
\] (A·5)

*) \(R_\rho\) stands for the factor \(R^{(a)}(u) \tilde{\beta}_i(u) K(u)\). Troublesome suffices are omitted from \(\tilde{\beta}_i(u)\).
$K^*\pi \rightarrow K^*\pi$: K_α and K_β are physical (1^{++}) and (1^{+-}) states

$$K_\beta = K_{+-} \cos \delta + K_{++} \sin \delta,$$

$$K_\alpha = -K_{+-} \sin \delta + K_{++} \cos \delta,$$

$$\tau_K R_{K} \frac{1}{\beta(u_K)} \left\{ \frac{1}{2} \cos \theta \cos \beta \right\}^2 + \tau_{K(\text{PT})} R_{K(\text{PT})} \frac{1}{\beta(u_{K(\text{PT})})} \left\{ \frac{1}{2} \sin \beta \cos \alpha \right\}^2$$

$$+ \tau_K R_{K_\beta} \frac{1}{\beta(u_{K_\beta})} \left\{ \frac{1}{2} \cos \delta \sin \beta \sin \alpha - \frac{1}{2} \sin \delta \cos \beta \sin \theta \right\}^2$$

$$+ \tau_K R_{K_\alpha} \frac{1}{\beta(u_{K_\alpha})} \left\{ -\frac{1}{2} \sin \delta \sin \beta \sin \alpha - \frac{1}{2} \cos \delta \cos \beta \sin \theta \right\}^2 = 0. \quad (A.6)$$

$\rho K \rightarrow \rho K$: the same as for $K^*\pi \rightarrow K^*\pi$.

$K^*K \rightarrow K^*K$:

$$\tau_{K^*} R_{K^*} \frac{1}{\beta(u_{K^*})} \left\{ \frac{1}{2} \cos \beta \cos \theta \right\}^2 + \tau_{A_{K^*}} R_{A_{K^*}} \frac{1}{\beta(u_{A_{K^*}})} \left\{ \frac{1}{2} \cos \beta \sin \theta \right\}^2$$

$$+ \tau_{K_\beta} R_{K_\beta} \frac{1}{\beta(u_{K_\beta})} \left\{ \frac{1}{2} \sin \beta \sin \alpha \right\}^2 + \tau_{(\text{PT})} R_{(\text{PT})} \frac{1}{\beta(u_{(\text{PT})})} \left\{ \frac{1}{2} \sin \beta \cos \alpha \right\}^2 = 0. \quad (A.7)$$

$\rho\pi \rightarrow \rho\pi$:

$$\tau_{\pi} R_{\pi} \frac{1}{\beta(u_{\pi})} \cos^2 \phi^{(-)} \left\{ \sqrt{\frac{2}{3}} \cos \theta \cos \phi^{(-)} + \sqrt{\frac{1}{3}} \sin \theta \cos \phi^{(-)} \right\}^2$$

$$+ \tau_{A_{\pi}} R_{A_{\pi}} \frac{1}{\beta(u_{A_{\pi}})} \cos^2 \phi^{(-)} \left\{ -\sqrt{\frac{2}{3}} \sin \theta \cos \phi^{(-)} + \sqrt{\frac{1}{3}} \cos \theta \cos \phi^{(-)} \right\}^2$$

$$+ \tau_{A_{\pi}} R_{A_{\pi}} \frac{1}{\beta(u_{A_{\pi}})} \sin^2 \phi^{(-)} \sin^2 \phi^{(+)} = 0. \quad (A.8)$$

$K^*\pi \rightarrow K^*\pi$:

$$\tau_K R_{K^*} \frac{1}{\beta(u_{K^*})} \left\{ \frac{1}{2} \cos^2 \phi^{(-)} \right\}^2 + \tau_K R_{K^*} \frac{1}{\beta(u_{K^*})} \left\{ \frac{1}{2} \sin \phi^{(-)} \sin \phi^{(+)} \right\}^2 = 0. \quad (A.9)$$

$A_\pi \rightarrow A_\pi$:

$$\tau_{A_{\pi}} R_{A_{\pi}} \frac{1}{\beta(u_{A_{\pi}})} \left\{ \cos \phi^{(+)} \sin \phi^{(-)} \right\}^2$$

$$+ \tau_{A_{\pi}} R_{A_{\pi}} \frac{1}{\beta(u_{A_{\pi}})} \left\{ -\sin \phi^{(+)} \left\{ \sqrt{\frac{2}{3}} \cos \theta \cos \phi^{(+)} + \sqrt{\frac{1}{3}} \sin \theta \cos \phi^{(+)} \right\}^2$$
Duality Constraints and Representation Mixings

\[+\tau_{R}\frac{1}{\beta(u_{R})}(-\sin\phi^{+})^{2}\left\{ \left(\frac{2}{3}\sin\theta_{R}\cos\phi^{+}\right) +\sqrt{\frac{1}{3}}\cos\theta_{R}\cos\phi^{+}\right\} ^{2} = 0. \quad (A\cdot10) \]

\[K^{+}\pi\rightarrow K^{+}\pi: \]

\[\tau_{K^{+}\pi}\frac{1}{\beta(u_{K^{+}\pi})}\left\{ \frac{1}{2}\sin\phi^{(-)}\cos\phi^{(-)}\right\} ^{2} +\tau_{K^{+}\pi}\frac{1}{\beta(u_{K^{+}\pi})}\left\{ \frac{1}{2}\cos\phi^{(-)}\sin\phi^{(+)}\right\} ^{2} = 0. \quad (A\cdot11) \]

\[K^{+}\pi\rightarrow K^{+}\pi: \]

\[\tau_{K^{+}\pi}\frac{1}{\beta(u_{K^{+}\pi})}\left\{ \frac{1}{2}\cos\phi^{(+)}\sin\phi^{(-)}\right\} ^{2} +\tau_{K^{+}\pi}\frac{1}{\beta(u_{K^{+}\pi})}\left\{ \frac{1}{2}\sin\phi^{(+)}\cos\phi^{(+)}\right\} ^{2} = 0. \quad (A\cdot12) \]

References

For early references, see those cited therein.

F. J. Gilman, M. Kugler and S. Meshkov, Preprint SLAC-PUB-1286.

8) Particle Data Group, Rev. Mod. Phys. 45 (1973), No. 2, Part II.
