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Sociotechnical risk assessment for water distribution

system contamination threats

Amin Rasekh, M. Ehsan Shafiee, Emily Zechman and Kelly Brumbelow
ABSTRACT
Water distribution systems (WDS) are vulnerable to contaminants, and systematic risk assessment

can provide valuable information for assisting threat management. Contamination events are

sociotechnical systems, in which the interactions among consumers and water infrastructure may

generate unpredicted public health consequences. This research develops a sociotechnical risk

assessment framework that simulates the dynamics of a contamination event by coupling an agent-

based modeling (ABM) framework with Monte Carlo simulation (MCS), genetic algorithm (GA)

optimization, and a multi-objective GA. The ABM framework couples WDS simulation with agents to

represent consumers in a virtual city. MCS is applied to estimate the uncertainty in human exposure,

based on probabilistic models of event attributes. A GA approach is used to identify critical

contamination events by maximizing risk, and a multi-objective approach explores the trade-off

between consequence and occurrence probabilities. Results that are obtained using the

sociotechnical approach are compared with results obtained using a conventional engineering

model. The sociotechnical approach removes assumptions that have been used in engineering

analysis about the static, homogeneous, and stationary behaviors of consumers, and results

demonstrate new insight about the impacts of these actions and interactions on the public health

consequences of contamination events.
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INTRODUCTION
Water distribution systems (WDS) are critical infrastructure

systems that are vulnerable to contamination events, which

occur when a chemical contaminant or pathogen is acciden-

tally or intentionally introduced to a pipe system.

Contamination events endanger public health, erode com-

munity trust in WDS serviceability, and interrupt non-

consumptive uses, such as firefighting. Water utilities are

responsible for managing WDS contamination threats and

are required to allocate resources to protect a community

from probable events under the Public Health Security

and Bioterrorism Response Act of 2002 (United States Con-

gress ). Threat management activities include hardening

infrastructure components, responding to events, and restor-

ing infrastructure service after an event has occurred
(Lindell et al. ; Haimes ). Risk assessment is an

important initial step that should be conducted to guide

analysis and decision-making required for threat manage-

ment. WDS contamination risk assessment is a systematic

process to identify critical contamination scenarios and esti-

mate the expected risk, which is the product of the

consequences and occurrence probability associated with

potential scenarios (Kaplan & Garrik ; Rose et al.

; Rasekh & Brumbelow ).

Risk can be assessed through a number of method-

ologies that are based on simulation and optimization.

Monte Carlo simulation (MCS) generates a large number

of possible intrusion events through randomly sampling con-

tamination scenario attributes and estimating the values for
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health consequences through hydraulic simulation (Nilsson

et al. ; Khanal et al. ; Torres et al. ). Critical

contamination scenarios may be identified through

extreme-consequence sampling (Perelman & Ostfeld )

and through systematic optimization of the components of

risk, which are likelihood and consequences (Rasekh &

Brumbelow ).

During a contamination event, the reactions and beha-

viors of a population of consumers may generate public

health outcomes that are not predicted by an engineering

modeling approach. Consumers may change their water

demands from typical usage patterns, as they become

aware of a contaminant through symptoms of exposure,

warnings from peers, and alerts from a local utility. As con-

sumers obtain more information about an event, they may

reduce their water activities and influence other consumers

to also reduce their consumption. Significant shifts in consu-

mer demand can feed back into the network hydraulics and

alter the predicted public health consequences of an event.

New hydraulic conditions alter the spatial and temporal

characteristics of the contaminant plume, exposing a differ-

ent set of consumers than originally predicted. Feedback

between the infrastructure and social systems may signifi-

cantly influence the emergent public health consequences

of a water contamination event, creating a sociotechnical

system and requiring new analytical methods (Glouberman

; Woo & Vicente ; Vicente & Christoffersen ;

Rasekh et al. ; Zechman et al. ).

A new sociotechnical risk assessment methodology is

developed and demonstrated here. Sociotechnical risk

assessment accounts for the influence of feedback mechan-

isms among consumers and the WDS during an

emergency to identify critical contamination event charac-

teristics. Existing methods for risk assessment are based on

assumptions that the demands exerted during an event are

consistent with those exerted during normal operating con-

ditions. The influence of changes in consumer behaviors

may introduce error in the predictions of an engineering

model (Shang et al. ), and as a consequence, the most

vulnerable regions in the network may differ from those

identified through engineering analysis. Sociotechnical risk

assessment uses a new simulation methodology that was

developed to simulate the feedbacks among the adaptive

and responsive actions of consumers and the WDS in a
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contamination event (Zechman ). This methodology is

based on Complex Adaptive System (CAS) simulation,

which is a technique for simulating a large number of inter-

acting actors to holistically evaluate the emergent properties

of a system (Holland ; Miller & Page ). The CAS

approach couples agent-based modeling (ABM) with a

water distribution model to evaluate the number of exposed

consumers when the changes in water activities are con-

sidered. The sociotechnical risk assessment methodology

couples MCS and evolutionary computation-based optimiz-

ation methods with the ABM framework to evaluate public

health impacts and characterize extreme-risk accidental

contamination events. The integrated framework is evalu-

ated and demonstrated for a virtual mid-sized city. Results

demonstrate that using an engineering model for risk assess-

ment may focus mitigation efforts on high consequence,

low-probability events. By using an ABM framework that

incorporates consumer dynamics, values for exposures are

predicted at lower levels than the engineering model pre-

dicts, and critical contamination events that are identified

have a higher relative probability of occurrence. These

insights can be used to direct the attention of a utility man-

ager in selecting critical contamination events to determine

resource allocation for emergency response.
SOCIOTECHNICAL RISK ASSESSMENT FOR WDS
MANAGEMENT

The sociotechnical risk assessment methodology that is

described here integrates recent developments in sociotech-

nical WDS simulation and the state-of-the-art methods for

characterizing risk and critical contamination events. A

sociotechnical modeling methodology was developed by

coupling ABM with a hydraulic simulation model for asses-

sing the impacts of consumer behaviors on public health in a

contamination event (Zechman ). During a contami-

nation event, consumers may move among contaminated

and clean nodes, adapt their demands based on warnings,

and communicate about an event. Readily available water

distribution models do not include capabilities to simulate

these interactions and, instead, assume that consumer

demands are homogeneous, static, and stationary. Engineer-

ing assumptions do not reflect reality, but they are adequate
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for selecting engineering planning decisions in typical oper-

ating conditions. In a contamination event, however, these

assumptions may not be adequate and may lead to a mis-

approximation of consumer health impacts.

To create an ABM framework of the contamination

event, each individual is represented as an agent; each

agent receives messages from a node in the water network

and other agents; agents reduce demands by a percentage

of their total use; and demand reductions are translated as

new input to the water distribution network model. The

ABM framework was applied as a proof-of-concept for

two simple networks described as tutorials in the

EPANET User’s Guide (Rossman ), including Net3

(Zechman ) and Net1 (Shafiee & Zechman ).

Zechman () developed the framework using realistic

estimations of the timing and volume of ingested water for

individuals. The framework was applied for the city of

Micropolis (Brumbelow et al. ), which is an all-pipe net-

work model for a virtual community of approximately 5000

residents. The numbers of exposed consumers were com-

pared for variations in the timeliness of reducing water

demands, and the work demonstrated that the model

could be used to evaluate a utility’s response actions, includ-

ing flushing water through hydrants and broadcasting

warnings. Shafiee & Zechman () further developed the

framework for Mesopolis (Johnson & Brumbelow ),

which is a skeletonized network model for a virtual city of

150,000 residents. For Mesopolis, the ABM framework

was extended to more realistically represent the volume

and likelihood of demand reduction using data from surveys

about the responses of individuals to a water emergency.

This work analyzed the extent to which hydraulics were

changed in the network due to consumer response. For an

event that introduces a large dose of a potent chemical

(arsenic), the predictions of the location and timing of a

contaminant plume differ significantly from engineering

predictions when adaptive demands are included in the

model, and hydraulic conditions are altered beyond

normal operating conditions. The ABM framework was

extended to include an optimization module for effectively

selecting and manipulating hydrants that should be flushed

(Zechman , ; Shafiee & Zechman ) and for rout-

ing emergency vehicles to efficiently warn consumers

(Shafiee & Zechman ). These studies compared the
s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
performance of management strategies predicted by

models that include consumer behaviors with models that

neglect consumer behaviors.

The previous studies analyzed the difference in public

health and hydraulics as predicted using a sociotechnical

approach and an engineering approach for a small set of

potential contamination events; however, the contami-

nation events were created and selected using engineering

judgment and limited preliminary analysis. A sociotechnical

risk assessment provides a new methodology to provide

better guidance on selecting contamination events for devel-

oping management strategies, by exploring how the actions

and interactions of consumers influence the vulnerability of

the WDS and the characteristics of high-risk contamination

events. Advanced risk assessment methodologies, including

MCS, genetic algorithm (GA)-based optimization, and multi-

objective optimization, are coupled with the ABM frame-

work in this research. While previous studies explored the

impacts of a small number of events on consumer health,

the application of the sociotechnical risk assessment

approach simulates thousands of events to determine: (1)

the range of consequences that could be expected due to a

contamination event; (2) the timing, location, and contami-

nant type of the worst-case events that could occur; and (3)

the trade-off in consequences and likelihood for the worst-

case events. This research explores and quantifies the differ-

ence between risk assessment results generated using a

sociotechnical approach with those calculated using a pipe

network model alone. This research can assist decision-

makers in determining the importance of insight provided

by sociotechnical approaches in selecting events for plan-

ning response strategies.
SOCIOTECHNICAL RISK ASSESSMENT
METHODOLOGY

This study develops a methodology for sociotechnical risk

assessment by coupling an ABM framework that simulates

water distribution contamination events with risk assess-

ment algorithms, including MCS, GA-based single-

objective optimization, and GA-based multi-objective

optimization (Figure 1). The ABM evaluates the exposure

for water contamination events that are generated by risk



Figure 1 | Sociotechnical risk assessment framework. The framework is applied to esti-

mate public health consequences and characterize critical contamination

scenarios in a WDS.

Figure 2 | ABM framework for a WDS contamination event. Each consumer is simulated

as an agent with attributes and behaviors as shown.
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assessment algorithms. MCS generates a probability distri-

bution for the public health impacts of contamination

events. The single-objective optimization identifies critical

contamination events with the highest values for risk,

while the multi-objective optimization identifies and

explores the trade-offs between the likelihood of events

and the public health consequences of events. Abbreviated

descriptions are given below of each module, and the

reader is referred to related documents in the following sec-

tions for complete descriptions.

ABM for simulation of WDS contamination events

ABM is a computational method that is used for simulating

a CAS (Axelrod ). ABM simulates a system as a set of

aggregated autonomous agents that receives information

from other agents and its environment and selects actions

based on a set of rules. ABM provides the analysis capabili-

ties to assess the emergence of system-level properties that

result from complex nonlinear interactions among decentra-

lized agents.

An ABM framework models a sociotechnical water dis-

tribution contamination event and evaluates public health

consequences measured as the number of exposed consu-

mers (shown in Figure 2). The framework couples

consumer agent models with a WDS model. Consumer
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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agents are modeled using a set of attributes and rules to

specify behaviors (listed in Figure 2 and described

below). At each simulation time step, the WDS model

passes to consumer agents water quality data, which are

used to calculate each agent’s level of exposure to the con-

taminant based on the concentration value and the volume

of water that is ingested. Consumers exert demands at

different locations within a city as they travel to and

from business and residential districts. A consumer agent

ingests water at five ingestion events during the day and

changes its water use when it consumes a critical mass

of contaminant, which is calculated by the exposure

model. A consumer agent sends a message to other

agents once it reduces water usage. Consumers receive

messages from other agents and reduce their water

demand along with those who are exposed. New demand

patterns feed back to the WDS model and alter hydraulic

conditions. The ABM is implemented by coupling a

dynamic modeling system, AnyLogic (XJ Technology

) with a hydraulic simulator, EPANET (Rossman

). Rules and attributes of the consumer agents are

described briefly in the following sections, and complete

descriptions are provided by Zechman () and Shafiee

& Zechman ().
Demographic characteristics

Each consumer agent is assigned a value for weight, age,

gender, and employment status. Demographic attributes

are generated probabilistically, based on available data

(United States Environmental Protection Agency ), to

represent the statistical distribution of the characteristics

of the national population. The Bureau of Labor Statics of

the US Department of Labor () provides employment

rates across age groups.



Table 1 | Statistical data for pathogens (Rasekh & Brumbelow 2013)

Pathogen type
Occurrence
probability (%)

Infectious
dose (cells) Expected IDPC a

Giardia 20.6 10 to 100b 195

E. coli 15.9 1.0 Eþ 08c 131

C. jejuni 20.6 500c 197

Norwalk-like
virus

15.9 100d 239

Cryptosporidium 27.0 10c IDPC quartiles:
2%: 0.29, 25%:
1.0, 50%: 2.3,
75%: 87, 98%:
412

aIDPC¼ infectious doses per capita.
bRoxström-Lindquist et al. (2006).
cKothary & Babu (2001).
dCenters for Disease Control and Prevention (2001).
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Water ingestion

Each consumer agent is encoded with a rule that specifies

the timing for five ingestion events each day. Davis &

Janke (, ) developed a model to approximate the

amount of tap water a consumer ingests per day and the

timing of five ingestion events. The timing model uses prob-

ability distributions to generate the times at which three

major meals are taken, along with the timing of two minor

meals, which occur mid-way between major meals. The

amount of water a consumer agent consumes each day is

based on gender and weight (United States Environmental

Protection Agency ). The total volume of water is

divided evenly among the five ingestion events.

Mobility

Each consumer agent is assigned a residential node, a non-

residential node, and timing for leaving residential and

non-residential nodes. Agents that are tagged as ‘employed’

are assigned a non-residential node at commercial and

industrial nodes. The diurnal demand pattern that is pro-

vided as input for the hydraulic network model is used to

determine the number of agents who should be located at

each node and time step. Mobility can affect the exposure

of an agent, as it travels among different sections of the

city and visits nodes that deliver contaminated water.

Exposure model

An exposure model is used to estimate the exposure of each

agent, based on the volume of ingested water, the concen-

tration of the contaminant, and the body weight (Ayotte

et al. ). The amount of contaminant ingested by each

consumer agent is an accumulative value, which is calcu-

lated as

Mc ¼
Xn

i¼1

Vi ×Qi (1)

where Mc¼mass of contaminant consumed, n¼ number of

ingestion events, Vi ¼ volume of water consumed at inges-

tion event i in liters, and Qi¼ concentration of

contaminant in water at ingestion event i in mg/liter. The
s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
agent is flagged as ‘exposed’ once the mass in the agent’s

body exceeds a specified dose. The critical dose can be rep-

resented as an infectious dose for pathogens (White ), to

represent that the agent would experience symptoms of ill-

ness. The analysis presented here explores risk assessment

for pathogens, and the approximate number of pathogen

cells in an infectious dose for each pathogen is shown in

Table 1.
Communication among consumers

During a WDS contamination event, a consumer communi-

cates with peers and colleagues based on actual and

perceived risks. Lindell & Perry () developed a com-

munication model that is based loosely on the small world

network model (Watts ) to simulate the unidirectional

flow of information within a cluster of peers via word-of-

mouth during an emergency. Each consumer agent is

assigned a cluster, which represents the collection of peers

and family members. Consumer agents are labeled as orig-

inal source, intermediate receivers, ultimate receivers, or

information isolates. Ultimate receivers can receive warning

messages from the original source or intermediate receivers,

and intermediate receivers can receive messages from the

original source. Once an agent receives a message or

becomes exposed, it passes a message to receiving agents

after one time step has passed.
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Adopting protective actions

Agents become aware of contamination events as they are

alerted by peers (described above in ‘Communication

among consumers’) or once they have consumed enough

contaminant to experience symptoms (described above in

‘Exposure’). At the same time step that an agent is alerted

via either pathway, it takes protective actions to safeguard

its health. The effect of these protective actions is modeled

as a reduction in the hourly demand of consumer agents,

based on typical demands exerted through the use of

water appliances. Mayer et al. () categorized indoor

end-uses for US households, including washing clothes

(22% of total water demand), toilet (26%), shower (17%),

faucet (16%), leakages (14%) and other miscellaneous uses

(5%). Lindell et al. () fielded a survey to determine

how respondents would reduce water activities due to the

potential contamination of tap water. Based on survey

results, each consumer agent is assigned a set of values to

represent the probability of suspending a water activity

(e.g., washing clothes, washing kitchen, taking a shower,

washing hands, rinsing mouth, washing dishes, brewing

coffee, cooking, rinsing fresh vegetables), which leads to a

reduction in the demand of a consumer agent. An agent

selects to suspend water activities once it receives a message

from another agent or once the agent becomes exposed. For

example, a consumer that is aware of an event has a 38.4%

probability of suspending its use of tap water for taking

showers, which reduces its demand by 11.7%. Probabilities

for all water activities and analysis of survey results are pro-

vided by Shafiee & Zechman ().

MCS for characterizing consequences

MCS is a numerical procedure for generating a probability

distribution of system response based on estimated uncer-

tainties in system inputs. MCS executes a large number of

random realizations of input variables, which are contami-

nation event characteristics, and simulates the response, or

consumer exposure, using a system model. MCS and sensi-

tivity studies have been conducted to estimate the likely

health effects from WDS contamination events, which pro-

vides insight to the variability of exposure levels across

various values for event characteristics (Uber et al. ;
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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Nilsson et al. ; Khanal et al. ; Torres et al. ;

Pasha & Lansey ; Davis & Janke ). In simulating a

WDS contamination scenario, a realization of random vari-

ables for the pathogen type, the pathogen load, the intrusion

location, the water demand multiplier, the time of day, and

the intrusion duration, are generated using the distributions

described below. The system response of interest is the

number of exposed consumers, which is the output of the

ABM simulation.
Statistical inference to characterize contamination event
attributes

Documentation and meta-analysis of past contamination

events is needed to determine the likelihood of contami-

nation event characteristics. Data about historic accidental

contamination outbreaks have been collected by agencies

(e.g., the Centers for Disease Control and Prevention) and

scholars (e.g., Hrudey & Hrudey , ), and these

data have been analyzed to provide quantitative information

on expected contamination event patterns and character-

istics (Reynolds et al. ; Rasekh & Brumbelow ).

Statistical inference was conducted to determine the prob-

ability distributions that describe contamination event

characteristics. Rasekh & Brumbelow () analyzed 70

historic accidental contamination outbreaks collected by

Hrudey & Hrudey (, ) and used statistical inference

to construct a set of probability distributions for scenario

attributes. Each contamination scenario is defined by a set

of attributes, including the contaminant intrusion location

(L), the time of day the contamination begins (T ), and the

intrusion duration (ΔT ), contaminant type (C), contaminant

loading (M), and the time of year contamination occurs (rep-

resented by a surrogate WDS-wide demand multiplier (D)).
Analysis of historic events reveals that 89% of documen-

ted events originated at water treatment plants. To generate

a value for L, the location is selected uniformly from all

water treatment plants in a network. The time of day (T )

that a contaminant is first introduced to the network and

the duration of the intrusion (ΔT ) are subject to high uncer-

tainty (Hrudey & Hrudey ; Bristow & Brumbelow

), and a uniform distribution is used to generate these

attributes. Five pathogens appeared most frequently in the

historic dataset: Giardia lamblia, Escherichia coli,
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Campylobacter jejuni, Cryptosporidium, and Norwalk-like

virus. Occurrence probabilities for the five pathogens (C)

were calculated based on their occurrence frequency in

the compiled data. An exponential distribution was fit to

describe the amount of contaminant (M) introduced into

the WDS, which is measured as the number of infectious

doses per capita (IDPC). Frequency and expected values of

IDPC for the five pathogens are reported in Table 1.

Contamination events can create diverse public health

consequences based on the time of year at which they

occur. This is because water demands fluctuate among sea-

sons, as consumers use more water in summer months,

and less water in winter months. The time of year that a con-

tamination occurs is represented in the modeling as

seasonal variations in demand through a WDS-wide

demand multiplier. A shifted gamma distribution was fit to

describe the demand multiplier, using real data obtained

from New York City for 1982 (Protopapas et al. ) and

an unpublished data set for a water utility in Texas. Prob-

ability distributions for all attributes are summarized in

Table 2.

Optimization-based approaches to identify critical

events

Optimization methods can be applied to identify a small set

of critical contamination scenarios, which occur at maxi-

mum values of likelihood and consequences (Kaplan &
Table 2 | Probability distributions for contamination scenario attributes

Scenario attributes
Probability
distribution Possible values

Intrusion location Uniform {West WTPa, East
WTP}

Contaminant type Experimental 5 pathogensb

Contaminant
amount

Exponential {0.00, 0.01, …, 1.00}c

Demand multiplier Shifted gamma {0.600, 0.625, …,
2.300}

Intrusion start time Uniform {00:00, 01:00, …,
23:00}

Intrusion duration Uniform {24, 25, …, 96}

aWTP: water treatment plant.
bListed in Table 1.
cNormalized by dividing by the 98th percentile.
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Garrik ). Perelman & Ostfeld () proposed a

method to sample and identify a set of events with small

probabilities of occurrence and extreme impacts. Rasekh

& Brumbelow () identified critical events by maximizing

risk, defined as the product of likelihood and consequences,

using a GA-based approach. Rasekh & Brumbelow ()

further demonstrated the utility of applying multi-objective

optimization for risk assessment. While events of maximum

risk (the product of consequences and probability of occur-

rence) can be considered for placing sensors and planning

emergency response, decision-makers may be interested in

a range of events that could occur, including rare events

with extreme consequences and more likely events with

low consequences. By considering a diverse ensemble of

critical events, instead of one event alone, decision-makers

can explore and enhance the robustness and reliability of

risk mitigation and emergency response plans. Multi-

objective methods can be applied to generate a trade-off

relationship between likelihood and consequences and pro-

vide additional information for decision-making.
Single-objective optimization

The identification of a critical event is posed as an optimiz-

ation model, where the product of the likelihood and

consequences defines risk, Rp, which should be maximized

(Kaplan & Garrik ). Multiplication of likelihood and

consequences to construct a single measure of expected

damages is a conventional approach and has been exten-

sively applied for risk assessment in water resources

engineering and many other disciplines (Tung et al. ).

The scenario likelihood, p, is defined here as a joint prob-

ability of multiple random variables, which represent event

attributes (Ang & Tang ):

p ¼ P(L ¼ l, C ¼ c, M ¼ m, D ¼ d, T ¼ t, ΔT ¼ δt) (2)

where l, c, m, d, t, and δt represent specific values for

random scenario attributes, including the contaminant

intrusion location, contaminant type, contaminant loading,

the WDS-wide demand multiplier, the time of day the con-

tamination begins, and the intrusion duration, respectively.

Statistical independence is assumed among all scenario

attributes, except for the contaminant type and amount,
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and Equation (2) is reformulated as

p ¼ P(L ¼ l) × P(C ¼ c) × P(MjC ¼ mjc) × P(D ¼ d)

× P(T ¼ t) × P(ΔT ¼ δt) (3)

where P(M|C¼m|c) denotes the probability that M¼m

given C¼ c. Because some scenario attributes are continu-

ous random variables (e.g., intrusion duration), the

probability functions are discretized using discrete variable

intervals (probability functions are described in Table 2).

The number of all possible scenarios and, consequently,

the scenario likelihood, p, depends on the degree of discre-

tization, as each random variable is rounded to the upper

or lower bound of a range, to approximate its likelihood.

Choosing smaller ranges for discretization can estimate

the true probability distribution more accurately. Probability

approximations based on the probability functions are used

in this study as the occurrence probability of events.

The consequence of an event is quantified here as the

number of people that become exposed (Ns) due to a con-

tamination event. As described above, an agent is

considered exposed if the amount of ingested contaminant

mass exceeds the infectious dose, and the number of

exposed consumers is calculated using the ABM framework.

Critical contamination events can be identified by solving

the following equation:

Maximize Rp ¼ p ×Ns (4)

The decision variables are the contamination event

characteristics (l, c, m, d, t, and δt, as defined above) that

are used to calculate p, the probability of an event, and the

number of exposed consumers. Equation (4) represents a

highly nonlinear and discrete objective function due to the

dynamics of the ABM approach and the complexity of the

combination of multiple probability distributions for charac-

terizing scenario attributes. Evolutionary algorithms

(Holland ) have been used effectively to solve water

resources planning and management problems (Nicklow

et al. ). A GA-based approach (Goldberg ) is used

to identify characteristics of the critical contamination

event. The GA mimics natural evolution to converge to a

near-optimal solution by generating and selecting new
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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solutions through recombination (crossover), mutation,

and selection.

Multi-objective optimization

A multi-objective problem is formulated to maximize the

components of likelihood and consequences as separate

objectives, as follows:

Maximize Z1 ¼ p

Maximize Z2 ¼ Ns
(5)

where Zi represents the ith optimization function, and the

decision variables are the contamination event character-

istics, l, c, m, d, t, and δt. Solution of Equation (5) through

the use of a multi-objective optimization algorithm will

yield a set of non-dominated solutions, which is called the

‘maximum-risk frontier’. The maximum-risk frontier is a

set of diverse critical scenarios with varying levels of likeli-

hood and consequences (Rasekh and Brumbelow ).

The optimization problem represented by Equation (5) is

solved here using an evolutionary algorithm for multi-

objective problems, the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) (Deb et al. ). NSGA-II uses a

non-dominated sorting strategy, which sorts and ranks sol-

utions based on non-dominance, and a crowding distance,

which measures the degree to which solutions are spread

uniformly across the non-dominated front. The selection

operator chooses solutions based on Pareto-dominance

and values for the crowding distance. Crossover and

mutation operators as implemented within NSGA-II are

similar to archetypical operators used for a GA.
ILLUSTRATIVE CASE STUDY: MESOPOLIS

The risk assessment framework is applied to generate a dis-

tribution function of consequences, critical contamination

events, and a maximum-risk frontier for Mesopolis, a virtual

city. The Mesopolis dataset was developed as a case study

for urban infrastructure research (Johnson & Brumbelow

). Mesopolis is simulated with a population of

146,716. Land use in Mesopolis is comprised of residential,

commercial, and industrial areas, and within the city limits,
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there is a naval base, an airport, and a university (Figure 3).

Water is withdrawn at an intake located south of the city,

from a river that runs north through the center of Mesopolis.

A branched pipe delivers raw water to two water treatment

plants (WTP), located on opposite sides of the river. The

West WTP supplies water to the older sections of Mesopolis,

located on the western side of the river, and the East WTP

distributes water to the eastern section and, during peak

demand periods, to a large portion of the central and wes-

tern districts. The network is modeled as a skeletonized

water network with one reservoir, 1588 nodes, 2058 pipes,

13 tanks, and 65 pumps. Four demand patterns are applied

for different nodes based on residential, commercial, indus-

trial, and naval land uses.
Engineering and sociotechnical modeling frameworks

This work compares the sociotechnical model, constructed

as the ABM framework, with a conventional engineering

model. The engineering model, which is a hydraulic simu-

lator (EPANET), follows a typical engineering approach

and does not account for sociotechnical interactions

among the consumers and the WDS. Changes in consumer

water demands during a contamination event are not con-

sidered, and, instead, consumer demands are simulated as

static, homogeneous, and aggregated only at residential
Figure 3 | Mesopolis WDS. Different land uses have distinct water demand patterns in the hy

s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
nodes. The number of consumers at each residential node

is calculated by dividing the base demand value at that

node by the daily water consumption per consumer,

which is assumed as 105 gallons per person per day. Con-

sumers are not simulated at non-residential nodes and do

not travel to other nodes during the day. Each consumer

ingests 0.93 liters of water per day, distributed uniformly

over five ingestion events at 07:00, 09:30, 12:00, 15:00,

and 18:00. Both the engineering model and the sociotechni-

cal model are simulated for a 10-day period, and both

models are coupled with the MCS and optimization

methodologies.
RESULTS

MCS results

MCS is executed for 20,000 and 5,000 random event realiz-

ations for the engineering model and the sociotechnical

model, respectively. Simulation of a single event requires

15 seconds and 600 seconds for the engineering model

and the sociotechnical model, respectively, on a personal

desktop computer. The increased simulation time for the

ABM framework is due to the extra computation required

to simulate the interactions among agents and the WDS.
draulic model.



Figure 5 | Average exposure over all MCS realizations separated by the contaminant

intrusion site. WOM indicates word-of-mouth mechanism.
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MCS results are used to generate the cumulative distri-

bution function (CDF) for the number of exposed

consumers. The CDF obtained using the engineering model-

ing has a discontinuous step-wise shape, while the CDF

estimated using the ABM framework increases monotoni-

cally (Figure 4). There is a ‘hydraulic barrier’, which cuts

through the center of the city, and during most hours of

the day, the West WTP supplies water to western nodes,

with a population of approximately 38,000, and the East

WTP supplies water to eastern nodes. During peak

demand hours, the East WTP also provides water to western

nodes. All events are simulated at one of the two WTPs. As a

result of the hydraulic barrier, events at both WTPs can gen-

erate consequences of less than 38,000 exposures, while

only events at the East WTP can generate greater conse-

quences when contaminated water propagates to the

western residential sections during peak demand periods.

This discontinuity does not appear in the CDF for the socio-

technical framework, because agents travel across the

hydraulic barrier, and events at the West WTP can reach

more consumers and create more significant consequences

than predicted by the engineering model.

Figure 5 shows that the average exposure for events that

originate at the West WTP is higher than the average

exposure for events at the East WTP. These results are coun-

ter intuitive when compared to the location of the

maximum-risk events (East WTP), but again result from

dynamics caused by the hydraulic barrier. For events at

the West WTP, the contaminant remains in the western

region and occurs at high concentrations, even for moderate

loads. As a result, a significant portion of the consumers
Figure 4 | MCS results for engineering and sociotechnical models. WOM indicates word-

of-mouth mechanism.
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becomes sick. For many events at the East WTP that are

initiated with moderate loads, the contaminant disperses

throughout the entire network and the contaminant concen-

trations become diluted, so that only a few consumers are

exposed in these events.

The sociotechnical framework predicts a lower number

of zero-exposure events than the engineering model pre-

dicts. For the engineering model, 81% of the realizations

result in zero exposures, while approximately 10% of the

realizations results in zero exposures using the sociotechni-

cal model. Because the engineering model does not simulate

that consumers travel in the city, consumers are safe when

their fixed residential locations are not contaminated. In rea-

lity, however, members of a community move within a city

during a contamination event, and they may be exposed to

contaminated areas even when their places of residence

remain uncontaminated. This dynamic is included in the

ABM framework through simulation of mobility, which

leads to a higher number of non-zero-exposure contami-

nation events predicted by the ABM framework.
Word-of-mouth mechanism

The effect of the word-of-mouth mechanism on the exposure

CDF was assessed through further simulations. The word-of-

mouth mechanism was disabled, and MCS was again exe-

cuted using the sociotechnical model for the same 5000

event simulations. By excluding word-of-mouth, the

exposure CDF is shifted to reflect an increase in the total

number of exposed consumers (Figure 4). The exposure

CDF has a continuously increasing shape when the word-

of-mouth mechanism is excluded, which indicates that the
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communication among consumers does not drive the distri-

bution of impacts; instead, it is the heterogeneous drinking

patterns and mobility of agents that drive the differences

between the CDFs generated by the engineering and socio-

technical models. As shown in Figure 5, average exposure

across all events is higher when the word-of-mouth is

excluded, compared with the sociotechnical simulation

that includes it.

Optimization results

AGA is used to solve the single-objective problem (Equation

(4)) for a set of contamination events, including events at the

two WTPs for two pathogens, which are simulated using the

ABM framework and engineering model separately, for a

total of eight optimization scenarios. Cryptosporidium and

Giardia were chosen as the pathogens of study because

they produced, on average, higher risk values than the

other pathogens, based on the MCS results. NSGA-II is

used to solve the multi-objective problem (Equation (5))

for the same set of eight scenarios. Solutions are encoded

using a real-valued representation, and the GA is

implemented using roulette wheel selection, simulated

binary crossover (Deb & Agrawal ), and polynomial

mutation (Deb ). The algorithmic parameter settings

for the optimization models are shown in Table 3, and the

number of function evaluations for one execution of an

optimization algorithm is approximately 1,400 and 4,100

for the GA and NSGA-II approaches, respectively. Because

an evolutionary algorithm uses random operators in the

search, there is stochasticity in the results, and separate
Table 3 | Algorithmic parameter settings for GA and NSGA-II

Parameter GA NSGA-II

Population size 40 100

Number of
generations

50 50

Tournament size N/A 3

Crossover type Simulated binary
crossover

Simulated binary
crossover

Crossover rate 0.7 0.8

Mutation type Polynomial Polynomial

Mutation rate 0.05 0.10

s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
runs of an algorithm may produce solutions that vary in fit-

ness and decision variable values. For each scenario and

model, five random trials were run for the single-objective

GA to provide some assessment of the variability in solution

quality. Because of the computational time required for sol-

ution evaluation, the multi-objective algorithm was executed

only once for each model and contamination event.

Single-objective optimization results

The objective function value, or risk, for each of the five

random GA trials is shown in Table 4. The similarity

among results for each contamination event indicates that

the GA reliably identifies critical contamination events

with similarly high risk. There is an exception when Crypto-

sporidium is introduced into the East WTP. For this

contamination scenario, three out of five random optimiz-

ation trials fail to find a non-zero-risk contamination event

using the engineering model. The IDPC for Cryptosporidium

is low and the dilution effect is significant when the East

WTP is the injection site; as a result, the search domain

for this contamination event is dominated mostly by zero-

exposure contamination events.

Tables 4 and 5 show the decision variables and risk for

each of the five random trials. The maximum-risk events

that occur at the East WTP are initialized with larger loads

of contaminant mass than the maximum-risk events at the

West WTP. Though the probability of occurrence is smaller

for larger contaminant loads, the consequences are higher,

producing a higher value for risk for the large contaminant

loads at the East WTP. The potential area that can be contami-

nated by the East WTP is larger, and the dilution effect is more

significant than for events that occur at the West WTP. The

value of the normalized pathogen load is larger for Crypto-

sporidium events than Giardia events, as the IDPC for

Cryptosporidium is much smaller than that of Giardia.

The demand multipliers associated with different maxi-

mum risk scenarios are consistently lower than the

average demand multiplier (1.00), because lower demand

multipliers correspond to lower dilution effects and higher

exposure. The minimum value for the demand multiplier is

used in the final solution for critical contamination events,

however, because while it increases the exposure level, it sig-

nificantly decreases the occurrence probability.



Table 4 | Value of risk for five solutions identified through random trials of a GA for the single-objective problem

Location West WTP East WTP
Pathogen Giardia Crypto. Giardia Crypto.
Model Engr. ABM Engr. ABM Engr. ABM Engr. ABM

Risk values for 5 solutions 1.39 × 10-3 6.10 × 10�4 3.43 × 10�4 2.57 × 10�4 6.60 × 10�4 3.32 × 10�4 4.30 × 10�5 8.67 × 10�5

1.36 × 10�3 6.06 × 10�4 3.42 × 10�4 2.55 × 10�4 6.08 × 10�4 3.31 × 10�4 2.77 × 10�5 8.57 × 10�5

1.36 × 10�3 5.98 × 10�4 3.29 × 10�4 2.54 × 10�4 6.03 × 10�4 3.30 × 10�4 0.00 × 10�5 8.56 × 10�5

1.31 × 10�3 5.98 × 10�4 3.19 × 10�4 2.54 × 10�4 5.87 × 10�4 3.28 × 10�4 0.00 × 10�5 8.55 × 10�5

1.29 × 10�3 5.96 × 10�4 3.17 × 10�4 2.47 × 10�4 5.87 × 10�4 3.23 × 10�4 0.00 × 10�5 8.52 × 10�5

Bold indicates the maximum risk solution.

Table 5 | Decision variable values for five solutions for each optimization scenario. Results are obtained through execution of a GA for the single-objective problem

Location West WTP East WTP
Pathogen Giardia Crypto. Giardia Crypto.
Model Engr. ABM Engr. ABM Engr. ABM Engr. ABM

Start time {8, 7, 10, 1,
6}

{15, 16, 12,
11, 1}

{6, 7, 8, 5, 5} {15, 15, 15,
16, 13}

{20, 16, 1,
20, 14}

{3, 1, 4, 2, 1} {20, 18, 8,
14, 0}

{1, 2, 1, 2, 1}

Duration (hr) {36, 82, 56,
91, 38}

{32, 60, 39,
66, 51}

{38, 82, 37,
86, 66}

{34, 39, 30,
32, 62}

{37, 72, 95,
60, 65}

{38, 24, 29,
38, 24}

{26, 24, 77,
73, 36}

{25, 24, 24,
38, 24}

Demand
multiplier

{0.925, 0.9,
0.95, 0.9,
0.925}

{0.875,
0.925,
0.875, 0.9,
0.95}

{0.8, 0.85,
0.775,
0.875,
0.775}

{0.9, 0.875,
0.875,
0.875,
0.9}

{0.95, 0.85,
0.825,
0.925,
0.75}

{0.875, 0.825,
0.875,
0.875,
0.825}

{0.75, 0.7,
0.975,
0.975,
0.975}

{0.825,
0.825, 0.8,
0.825, 0.8}

Normalized
pathogen
load

{0.35, 0.35,
0.36, 0.36,
0.37}

{0.3, 0.31,
0.3, 0.3,
0.31}

{0.71, 0.75,
0.7, 0.78,
0.71}

{0.44, 0.41,
0.42,
0.41,
0.43}

{0.74, 0.76,
0.74, 0.76,
0.67}

{0.42, 0.42,
0.42, 0.41,
0.4}

{0.86, 0.86,
0.02, 0.02,
0.02}

{0.6, 0.62,
0.57, 0.57,
0.62}

The normalized pathogen amount represents the number of infectious doses, normalized by dividing by the 98th percentile of the exponential distribution for each pathogen. Solution order

corresponds to the list of risk values in Table 4, of decreasing risk. Bold indicates the maximum-risk solution.
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The critical injection start times vary based on the

location and the simulation model. The contaminant injec-

tion at the West WTP occurs in the evening as consumers

return from unaffected central commercial and industrial

districts to contaminated residential nodes in the western

part of the network. When the engineering framework is

used, critical contamination events at the West WTP

occur in the morning because the population does not

move to the unaffected central or eastern areas during the

day, and consumers drink water at regular intervals in the

day, beginning at 7 a.m. When the East WTP is contami-

nated, injection is more critical in the morning for the

sociotechnical model, due to the influence of mobility.

Early injection exposes the population members who

reside in the west, but travel to the contaminated central

and eastern commercial and industrial districts in the
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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morning. The western population segments are not at risk

when they are simulated as stationary at western areas,

using the engineering model.

The worst event across all events, as predicted by both

the engineering model and the sociotechnical model,

occurs when Giardia is introduced at the West WTP

(Table 6). Both models predict similar injection durations,

season of occurrence (based on the demand multiplier,

approximately June or October), and loading mass

(Table 5). The ABM framework predicts the number of

exposed customers to be approximately 38% of the

number predicted by the engineering model, for the worst-

case event. Both models predict the same ranking of

maximum-risk events as: (1) Giardia at the West WTP, (2)

Giardia at the East WTP, (3) Cryptosporidium at the West

WTP, and (4) Cryptosporidium at the East WTP. The



Table 6 | Objective function values for one representative solution for each optimization scenario

Location West WTP East WTP
Pathogen Giardia Crypto. Giardia Crypto.
Model Engr. ABM Engr. ABM Engr. ABM Engr. ABM

Occurrence probability 3.79 × 10�8 4.34 × 10�8 9.30 × 10�9 3.41 × 10�8 8.40 × 10�9 2.71 × 10�8 4.30 × 10�9 1.58 × 10�8

Exposure 36,682 14,057 36,718 7,538 78,879 12,244 10,091 5,499

Risk 1.39 × 10�3 6.10 × 10�4 3.42 × 10�4 2.57 × 10�4 6.60 × 10�4 3.32 × 10�4 4.30 × 10�5 8.67 × 10�5

Results are obtained through execution of a GA for single-objective problem.

Figure 6 | Multi-objective optimization model convergence history for Giardia introduced

at the East WTP.
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major difference between the characteristics of maximum-

risk events reported by the two modeling approaches is

in the values for pathogen loading. The engineering

model, compared to the sociotechnical model, consistently

reports a higher load for the pathogens, which causes

higher consequences, but corresponds to consistently

lower likelihoods of occurrence, by one order of magnitude

for three of four events. This difference highlights the utility

of the sociotechnical model. Because the ABM framework

simulates more population dynamics to calculate the

number of exposures, the discontinuities that are predicted

through an engineering approach are smoothed out by

population behavior, and the ABM framework does not

predict extreme events with high exposures. By maximizing

the number of exposed consumers (as a part of risk), the

optimization algorithm takes advantage of the artifacts of

the engineering simulation to identify what may be unrea-

listically high exposure values. For example, simulating

that all consumers drink water at five specific time steps

leads to the prediction of higher impacts than simulation

of a heterogeneous population that drinks at different

times throughout a day.

The contamination events identified through use of the

sociotechnical model are more probable than corresponding

events identified by the engineering model. In using the

ABM framework, decision-makers can plan for more likely

events, compared to the engineering approach. The trade-

off between occurrence likelihood and number of exposed

consumers, however, can cause difficulties for decision-

makers, because it may be unclear which component

should be weighted more heavily in planning for events.

The issue of this trade-off is addressed in the following sec-

tion, which uses multi-objective optimization to explore a

non-dominated set of contamination events.
s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
Multi-objective optimization results

NSGA-II is applied to solve the multi-objective problem

(Equation (5)) for eight optimization scenarios. The per-

formance of NSGA-II is evaluated based on the

hypervolume (Zitzler & Thiele ), which is the non-over-

lapping volume in objective space covered by members of a

non-dominated set of solutions with respect to a reference

point, set as the worst value for each objective. The hypervo-

lume is used to assess the convergence of the maximum-risk

frontier as it evolves. Increasing values of the hypervolume

necessarily represent an increase in the uniformity and

proximity to a true Pareto optimality, which are character-

istics that represent the quality of a non-dominated set of

solutions. The convergence of the hypervolume for one

trial is shown in Figure 6. Increasing values of the hypervo-

lume for increasing generations shows that the maximum-

risk frontier is migrating away from the worst point at the

origin (where probability and consequences are equal to

0.0) and spreading uniformly across both axes. The search

converges and stabilizes after approximately 30 generations.



Figure 7 | Multi-objective optimization results for contamination of West WTP (left column) and East WTP (right column); (a) and (b) illustrate maximum-risk frontiers, (c) and (d) show

demand multiplier associated with scenarios in maximum-risk frontiers, and (e) and (f) indicate injected pathogen amount associated with scenarios in maximum-risk frontiers.
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The results of the multi-objective optimization are eight

maximum-risk frontiers, for Giardia and Cryptosporidium

injected at the East and West WTPs for the engineering

model and ABM framework (Figure 7). As shown by the

non-dominated fronts in Figures 7(a) and 7(b), the engineer-

ing model produces lower-risk, higher-consequence

frontiers, compared to the sociotechnical model. The engin-

eering model predicts that the events occurring at the West

WTP have similar probabilities of likelihood, though they

vary in exposure from 0.0 to almost 38,000 exposed

consumers.
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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Values for scenario attributes, including the demand

multiplier and pathogen loading, as they correspond to the

non-dominated front, are shown in Figure 7. Maximum-

risk scenarios with higher exposures, and thus lower occur-

rence probabilities, occur when the aggregate water demand

(demand multiplier) is lower, as simulated using the socio-

technical model (Figures 7(c) and 7(d)). This trend in the

demand multiplier is less apparent for the engineering

model. The values for the contaminant loading vary across

the entire range (0.0–1.0) for the sociotechnical model,

while the contaminant loading for the engineering model



Figure 8 | Value of risk associated with scenarios in maximum-risk frontiers for contamination of (a) West WTP and (b) East WTP.
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remain in smaller windows of values, particularly for events

at the West WTP (Figure 7(e)). For example, the range of

exposures for Cryptosporidium at the West WTP is simu-

lated with the engineering model using normalized loading

rates between 0.6 and 0.8. The timing of events drives the

changes in population exposure across the set of non-domi-

nated solutions for the engineering model; for the

sociotechnical model, the loading rate drives the variation

in exposure.

A decision-maker, such as a water utility manager, can

use the non-dominated sets of solutions for planning for con-

tamination events and determine if high probability or high

consequences should be weighted more heavily in planning.

Because of the discontinuity of Giardia at the West WTP

event trade-off curve (Figure 7(a)), a decision-maker may

tend to focus on the ‘knee’, where there is a large increase

in occurrence probability with little decrease in the

number of exposed consumers. This part of the trade-off

curve, however, may be only an artifact of the discrete simu-

lation of consumer behaviors, and should not be considered

at the cost of neglecting other events. Specifically, the same

trade-off curve for the sociotechnical model shows a

smoother relationship. These trade-off curves can be used

to assist a decision-maker in selecting the number of

exposures that should be sustained and a level of occurrence

probability that is appropriate.

Figure 8 shows the magnitude of risk for the non-

dominated solutions identified using the multi-objective

optimization. For all curves, the peak value of the risk is

approximately equal to the maximum value of the risk

found through single-objective optimization for each
s://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
optimization scenario (shown for five solutions in Table 4

and for the best solution identified in Table 6). The peak

values for risk in Figure 8 should be multiplied by 0.5, the

location probability, to match the values reported in Tables 4

and 6.
CONCLUSIONS

A new framework is developed in this study for conducting

risk assessment of water distribution contamination events.

This research coupled an ABM with MCS and evolutionary

algorithms to assess the risk of contamination events

occurring in a water network of a mid-sized city, and a vir-

tual city is used as a case study to demonstrate the

framework. The ABM framework is the basis of a socio-

technical approach that simulates the dynamics of a

contamination event by simulating the influence of the

interactions among consumers and the WDS on the out-

comes of the event. Conventional engineering approaches

typically neglect the dynamic interactions among social

and technical elements of a water contamination event

and the adaptive behaviors of consumers. The risk assess-

ment that is generated through the sociotechnical

approach is compared with the results generated by an

engineering model alone, in which a hydraulic model simu-

lates the consequences of contamination events. The

engineering model and the ABM framework calculate the

number of exposed consumers, and the risk of an event

is calculated as the product of the exposure and the occur-

rence likelihood. This study found that estimates of risk
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that are obtained using a sociotechnical approach may

differ significantly from estimates obtained using an engin-

eering approach. The sociotechnical model removes some

of the unnatural components and discontinuities that are

introduced through an engineering approach that assumes

static, homogeneous, and stationary behaviors of consu-

mers in drinking water.

The probability distribution of public health conse-

quences, measured as the total number of exposed

consumers, is estimated using MCS. The CDFs are smooth

and continuous when the sociotechnical framework is

used. Results for the engineering model show that hydraulic

discontinuities and barriers cause the distribution curves to

follow a step-wise discontinuous trend. In addition, the

engineering model predicted a higher percentage of zero-

exposure events than predicted by the ABM framework.

A GA-based approach is applied to identify critical con-

tamination scenarios by maximizing risk for both the

engineering model and sociotechnical model. Both models

predicted that the maximum risk event would occur due to

Giardia injection at the West WTP. The engineering model

assumes static, homogeneous, and stationary behaviors for

consumers, and the artifact of this simulation is that the

exposure of consumers is predicted as high. Engineering

model results generate high-consequence events and low

likelihoods. When the sociotechnical aspects of an event

are included, high exposures are not predicted, and the criti-

cal contamination events that are identified have a higher

probability of occurrence. A multi-objective GA-based

approach is used to identify a maximum-risk frontier,

which is a set of contamination events that represent the

trade-off between the occurrence likelihood and the conse-

quences of contamination events. The maximum-risk

frontier can guide the development of risk mitigation and

emergency response plans, as decision-makers can explore

the number of exposed consumers for events that vary in

likelihood. Frontiers of the ABM are continuous, compared

to those of the engineering models, which are discontinuous

and discrete. Due to the discrete behaviors of consumers in

drinking water that are simulated using the engineering

model, many solutions in the engineering frontier are

located at similar points, creating discontinuous fronts.

A set of assumptions about consumer behavior has been

adopted in the ABM framework. The word-of-mouth
om https://iwaponline.com/jh/article-pdf/16/3/531/387258/531.pdf
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simulation that is used in the current framework assumes

a structured cluster of a small group of consumers. Due to

social media, microblogging, and online social networking,

the propagation of information among some consumers

may vary distinctly from traditional word-of-mouth mechan-

isms. New network models that become available can be

integrated within the ABM framework to explore the effects

of a well-connected community on public health outcomes.

The current model also simulates that an agent that is

exposed to a contaminant immediately reduces its water

consumption. The modeling is based on the assumption

that consumers recognize that the contaminant originates

in the water supply. More realistically, consumers may

blame food sources or contact with exposed peers, rather

than tap water, creating a delay in any reduction in water

demands.

The sociotechnical risk assessment framework

described here is designed to assess critical contamination

events, which should be identified so that water utilities

and public officials can plan approaches for mitigating

WDS for these events. While there are no currently avail-

able data to validate the sociotechnical approach or

engineering modeling approach for a realistic contami-

nation event, the sociotechnical approach provides new

insight about the WDS in contamination events that has

not been available for analysis before. The ABM approach

creates a flexible model, so that new analysis from surveys

can be used to improve simulation of individual behaviors.

Data about social networks and models for the cognitive

process that individuals take to diagnose symptoms can be

included to improve the accuracy of the modeling frame-

work. Utility managers can be simulated as they interact

during an event and take actions to alter WDS hydraulics

through opening hydrants to flush a contaminant and to

warn consumers about an event. Public health officials

and pharmacies may also play an important role in detecting

an event; data about the communication and networking

among health care providers and water utilities can be

used to simulate the confirmation of a water quality threat

as an increasing number of consumers seek medical

attention.

Further exploration of critical contamination events

may reveal that a set of events exist that cause similar

levels of risk. These sets of solutions should be identified
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to allow planning for a diversity of occurrence character-

istics that may cause public health consequences. Further

risk assessment approaches for exploring alternative sol-

utions (e.g., Zechman & Ranjithan ; Zechman et al.

) can be coupled with the ABM framework to identify

sets of critical contamination events and multiple maxi-

mum-risk frontiers. Ongoing explorations can create new

frameworks to identify discrete sets of solutions and fron-

tiers that provide better understanding of water events for

effectively developing consumer protection strategies.
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