Impaired Glutathione Peroxidase Activity Accounts for the Age-Related Accumulation of Hydrogen Peroxide in Activated Human Neutrophils

Yoshikazu Ito,1,2 Oumitana Kajkenova,1,2 Ritchie J. Feuers,3,4 Kodetthoor B. Udupa,1,2 Varsha G. Desai,1, Joshua Epstein,1 Ronald W. Hart,5 and David A. Lipschitz1,2

1The Donald W. Reynolds Department of Geriatrics and 2Department of Anatomy, University of Arkansas for Medical Sciences.
2Geriatric Research, Education and Clinical Center (GRECC), John L. McClellan Memorial Veterans Hospital, Little Rock, Arkansas.
Divisions of 3Genetic Toxicology and 4Biometry and Risk Assessment, Department of Health and Human Services, Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas.

Background. As assessed by flow cytometry, the increase in hydrogen peroxide in individual neutrophils from old volunteers was significantly greater than in neutrophils from young volunteers. To explain the discrepancy in previous reports that showed reduced superoxide generation with age and our finding, we measured the kinetics of antioxidative enzymes.

Methods. Neutrophils were obtained from young (ages 21-34) and old (ages over 65) volunteers. The increase in hydrogen peroxide following stimulation with formyl peptide in individual neutrophils was assessed by flow cytometry by using dihydrorhodamine 123. The enzyme kinetics was determined from the best fit curve using Michaelis-Menten equations.

Results. Aging was associated with a significant reduction in the Vm for glutathione peroxidase. The decreased activity was not due to selenium deficiency as the serum and neutrophil concentrations were identical with age. Following activation, a significant increase in the Km was noted in neutrophils from young but not from old volunteers.

Conclusions. These results account for the increased intracellular accumulation of hydrogen peroxide as a function of age in stimulated neutrophils. These results provide evidence in humans of an age-related impairment in antioxidative defense mechanisms that support the free radical theory of aging.

A n accumulation of free radicals is thought to contribute to age-related declines in cellular function (1). In phagocytic cells, however, the generation of large concentrations of oxygen radicals plays a central role in host defense against bacteria.

Earlier studies by us have suggested an age-related decline in the ability of neutrophils from older human volunteers to generate superoxide following activation by the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP) (2,3). The decline in the ability of neutrophils to generate superoxide is accompanied by a significant reduction in agonist-induced generation of the second messengers inositol triphosphate and diacylglycerol (3). Mobilization of intracellular calcium stores and influx from the extracellular medium following activation are also decreased in neutrophils obtained from old volunteers (2).

The initial purpose of this study was to define whether the age-dependent decline in neutrophil function reflected changes in the neutrophil cell population as a whole or changes in a subpopulation of cells that had a reduced ability to respond to stimulation. Heterogeneity, accounting for declines in function with age, has been reported in other cellular systems (4). We therefore measured intracellular hydrogen peroxide (H2O2) production in individual cells by flow cytometry. Paradoxically, we demonstrated an increase in H2O2 accumulation with age and no evidence of heterogeneity in responsiveness. To explain the discrepancy between the previously reported age-related decline in superoxide generation and increased accumulation of H2O2 in FMLP-stimulated neutrophils, we examined the activity and kinetic characteristics of key enzymes involved in the generation and neutralization of H2O2 in neutrophils.

METHODS

Blood

Venous blood from healthy male and female volunteers was drawn in acid-citrate-dextrose solution. All young (ages...
21–34 years) and old (ages over 65 years) volunteers were screened to exclude the presence of disease or medications.

Neutrophil Intracellular H$_2$O$_2$ Accumulation

The preparation of neutrophils and the measurement of intracellular H$_2$O$_2$ accumulation were carried out using dihydrodromedine 123 (Molecular Probes Inc., Eugene, OR) as previously described (5). Neutrophils were preincubated for 10 minutes at 37°C and then treated with 10$^{-5}$–10$^{-3}$ M FMLP. The emitted fluorescence was monitored using a fluorescence activated cell sorting (FACS) scan (Becton Dickinson, San Jose, CA). The H$_2$O$_2$ accumulation was quantified as a ratio of fluorescence intensity to control as described previously (6).

Preparation of Samples for Enzyme Assays

Neutrophils were isolated and purified as described previously (7). Neutrophils were resuspended in Krebs Ringer phosphate (KRP) containing 5.5 mM glucose at 4 × 105 cells/ml. After incubation at 37°C for 10 min, neutrophils were stimulated by 10$^{-4}$ M FMLP for 5 or 20 min. Neutrophils were sonicated and centrifuged as previously described (8). Superoxide dismutase activity was measured in the pellet. Supernatant samples were used for the other enzymes. To exclude the effects of sonication we conducted the following experiment. One unit of glutathione peroxidase (GPX) was added to cell suspensions of neutrophils obtained from young and old volunteers. Enzyme recovery was identical in both, averaging 95 ± 0.6 U in the young and 97 ± 0.5 U in the old.

Enzyme Assays

Total superoxide dismutase activity was measured by a Gilford Response II spectrophotometer (Ciba Corning Diagnostic Corp., Oberlin, OH) using kit SOD-525 purchased from Bioxytech (Cedex, France) (9).

Glutathione peroxidase activity was measured as described previously (10,11), except that the final reaction mixture contained 63.5 mM potassium phosphate buffer (pH 7.0), 1.19 mM reduced glutathione (GSH), 1.58 U/ml glutathione reductase, .178 mM reduced nicotinamide adenine dinucleotide phosphate (NADPH) (previously diluted in 0.1% NaHCO$_3$), and 0.635 mM ethylenediaminetetraacetic acid (EDTA). The reaction was started by adding various concentrations of H$_2$O$_2$, and the absorbance was monitored using a Cobas FARSA II spectrophotometer (Roche Diagnostic Systems, Inc., Montclair, NJ) at 30°C. In some experiments, 70 μM t-butyldihydroperoxide was used as substrate.

Glutathione reductase activity was measured as described previously (11,12). The final reaction mixture contained 133 mM potassium phosphate buffer (pH 7.2), .667 mM EDTA, and 3.34 mM oxidized glutathione (GSSG), and various concentrations of NADPH (diluted in 0.1% NaHCO$_3$) was added in the mixture. G-6PD activity was measured by a modification of a method described by Deutsch (13). The final reaction mixture contained 86 mM triethanolamine-HCl, 6.9 mM MgCl$_2$, 1.5 mM G6P, and various concentrations of NADP. The absorbance was measured after adding the mixture for 3 min, 10 sec. The extinction coefficient 6.22 × 103 M$^{-1}$cm$^{-1}$ was used for the calculation of the activity of glutathione peroxidase, glutathione reductase, and G-6PD.

Catalase (catalytic) activity was measured by a previously described method (14). Absorbance was read by a Gilford 2400-2 spectrophotometer.

Calculation of Enzyme Kinetics

Enzyme activity was expressed as units (IU). Maximum velocity (V_{max}) and Michaelis constant (K_m) obtained from the activity of each individual were calculated from the best fitting curves of Michaelis-Menten equations by using a nonlinear curve fitting program in Sigma Plot 5.0 (Jandel Scientific, Corte Madera, CA).

Selenium Level in Neutrophils and Serum

Neutrophils were digested with nitric acid as described previously (15). Selenium content was measured as described previously (16).

Immunoblotting of Glutathione Peroxidase

Neutrophils were lysed as described previously (17). The lysates were equalized for protein and subjected to 12% SDS-polyacrylamide gel electrophoresis, followed by transfer to nitrocellulose membranes. The membrane was immunoblotted as described previously (18) using monoclonal antibody to glutathione peroxidase (GPX347, gift from Dr. T. Moriuchi, Tokai University, Isehara, Japan), and developed using enhanced chemiluminescence (ECL) reagents (American, Buckinghamshire, U.K.). Immunoblots were scanned and analyzed by a computing densitometer model 300A using the program ImageQuant (Molecular Dynamics, Sunnyvale, CA). The amount of glutathione peroxidase in the individual samples was calculated based on the density of a blot containing 125 ng glutathione peroxidase standard. Values were expressed as ng glutathione peroxidase/mg total neutrophil protein.

Statistical Analysis

Data are expressed as means ± SEM. The Student’s independent or paired t-test, or the Mann-Whitney U-test were used; a p-value of .05 or less was considered significant. The power of the test to detect effects of age for V_{max}, K_m, and V_{max}/K_m was increased by combining the effects across stimulation groups. That is the consistency of the effects for age across stimulation groups contributed to the statistical significance.

RESULTS

Neutrophil Intracellular H$_2$O$_2$ Accumulation by Dihydrodromedine 123

Intracellular H$_2$O$_2$ accumulation (expressed as the ratio of median fluorescence intensity) in individual neutrophils from old volunteers was significantly higher than in the young at all concentrations of FMLP tested (Figure 1B). For example, 5 min after stimulation with 104 M FMLP, H$_2$O$_2$ accumulation averaged 14.67 ± 3.21 in neutrophils from the old and 6.27 ± 1.10 in the young volunteers (p < .05, Figure 1A). No obvious subpopulations of cells with
either increased or decreased responsiveness were noted in cells from either young or old volunteers. We eliminated the possibility that the increase in fluorescence noted in neutrophils from old volunteers was due to an increased accumulation of nitric oxide by showing that it was not detected by the fluorescent dye we employed in this study (data not shown).

Enzyme Assays in Neutrophils

We measured the activity of superoxide dismutase in neutrophil pellets prior to and following stimulation by FMLP. There was no significant difference between measurements, either basally or following stimulation, in neutrophils from young or old volunteers (Figure 2).

The activity versus substrate plot of glutathione peroxidase was significantly different with age following activation of neutrophils by FMLP (Figure 3). Five minutes after stimulation with FMLP, a V_{max} for glutathione peroxidase of 16.47 ± 5.36 IU/g protein in the old volunteers was significantly lower than a value of 36.03 ± 10.41 IU/g protein in the young volunteers (p < .05, Table 1). Basal K_{m} for glutathione peroxidase was identical in the young and in the old volunteers. In the young volunteers, K_{m} increased from a value of 1.79 ± .76 µM in the basal state to 3.03 ± .95 µM 20 min after stimulation with FMLP. In neutrophils obtained from old volunteers, K_{m} remained constant averaging 1.80 ± .44 and 1.67 ± .28 µM prior to and 20 min after stimulation.
stimulation with FMLP. In the basal state the V_{m}/K_{m} ratio averaged 11.02 ± 2.63 L/min/g protein in neutrophils from old volunteers, which was significantly lower than a value of 22.53 ± 3.49 L/min/g protein in the young (Table 1). Following activation the ratio decreased significantly in neutrophils from young volunteers to a value of 14.09 ± 2.09 L/min/g protein. In neutrophils from old volunteers, stimulation did not result in a significant change in the V_{m}/K_{m} ratio. Similar age-related reductions in glutathione peroxidase activity were noted when we used t-butyl hydroperoxide as the substrate to measure enzyme activity (data not shown).

We then studied the activity versus substrate plot of glutathione reductase (Figure 3). We found no significant differences in the V_{m}, K_{m}, or V_{m}/K_{m} between the young and the old volunteers, either prior to or serially after stimulation with FMLP (Table 1).

Employing different concentrations of NADP as a substrate, the kinetics of G-6PD was not compromised with age. Although the V_{m} at each time point prior to and following stimulation with FMLP was not significantly different, the V_{m} for G-6PD was significantly increased with age ($p < .05$) when all the values were analyzed together (Table 1).

Finally we examined the enzyme catalase. We did not find any significant differences in the V_{m} or K_{m} with age in either nonstimulated or FMLP-stimulated cells (Table 2).

Selenium Concentrations in Neutrophils and Serum
Glutathione peroxidase is a selenium-dependent enzyme. To determine if the age-related reduction in enzyme activity was due to selenium deficiency, we measured selenium concentrations in serum and neutrophils from 10 young and 10 old volunteers. Neutrophil selenium levels averaged 118.8 ± 10.8 in the young and 117.2 ± 10.1 pg/10^6 cells in the old volunteers. Serum levels averaged 79.1 ± 3.6 and 81.2 ± 2.4 ng/ml in the young and old volunteers, respectively.

Immunoblotting of Glutathione Peroxidase
There was no significant age-related difference in the concentration of glutathione peroxidase in neutrophils from nine young and nine old volunteers, either prior to or following stimulation with FMLP (Figure 4). Relative density units for individual samples were obtained following development and normalized to control glutathione peroxidase. Values expressed as ng glutathione peroxidase/mg protein averaged 241.9 ± 65.2 in the young and 314.9 ± 135.4 in
Table 1. The Kinetic Parameters of the Glutathione Redox Enzymes in Neutrophils from Young and Old Volunteers

<table>
<thead>
<tr>
<th></th>
<th>Time After Stimulation (min)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Glutathione Peroxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>29.71 ± 10.64</td>
<td>36.03 ± 10.41</td>
<td>35.22 ± 11.44</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>15.55 ± 3.21</td>
<td>16.47 ± 5.36*</td>
<td>19.76 ± 4.63**</td>
<td></td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>1.79 ± 0.76</td>
<td>2.21 ± 0.82</td>
<td>3.03 ± 0.95***</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>1.80 ± 0.44</td>
<td>1.20 ± 0.39</td>
<td>1.67 ± 0.28</td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub>/K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>22.53 ± 3.49</td>
<td>20.63 ± 3.75</td>
<td>14.09 ± 2.09***</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>11.02 ± 2.63*</td>
<td>15.20 ± 2.99</td>
<td>11.09 ± 1.98</td>
<td></td>
</tr>
<tr>
<td>Glutathione Reductase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>89.92 ± 8.00</td>
<td>73.89 ± 3.99***</td>
<td>63.91 ± 9.22***</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>87.45 ± 7.49</td>
<td>74.94 ± 7.95</td>
<td>66.13 ± 4.57***</td>
<td></td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>6.39 ± 0.65</td>
<td>5.85 ± 0.63</td>
<td>5.34 ± 0.69***</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>6.25 ± 0.42</td>
<td>5.72 ± 0.53</td>
<td>4.97 ± 0.43***</td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub>/K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>14.25 ± 0.93</td>
<td>13.30 ± 1.11</td>
<td>11.93 ± 0.66***</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>14.24 ± 1.15</td>
<td>13.60 ± 1.45</td>
<td>13.81 ± 1.26</td>
<td></td>
</tr>
<tr>
<td>G-6PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>494.4 ± 48.7</td>
<td>462.4 ± 50.2</td>
<td>503.4 ± 53.5</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>619.1 ± 99.5</td>
<td>684.3 ± 112.8</td>
<td>648.3 ± 89.9**</td>
<td></td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>34.12 ± 5.89</td>
<td>34.28 ± 8.24</td>
<td>32.10 ± 6.63</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>37.47 ± 9.57</td>
<td>43.59 ± 15.58</td>
<td>41.52 ± 13.83</td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub>/K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>16.41 ± 1.84</td>
<td>16.79 ± 2.15</td>
<td>18.63 ± 2.39</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>21.25 ± 4.78</td>
<td>24.79 ± 6.97</td>
<td>24.06 ± 6.65</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Cells were stimulated with 10⁻⁷ M FMLP. V_m was expressed as IU/g protein. K_m was expressed as μM. V_m/K_m ratio was expressed as L/min/g protein. * = 9 (glutathione peroxidase), 7 (glutathione reductase), or 10 (G-6PD), respectively.

**Indicates that the old volunteers are significantly different from the young volunteers (p < 0.05).

***When measurements at all time points are analyzed together, the values for the old volunteers are significantly different from the young volunteers (p < 0.05).

****Indicates that the value with stimulation is significantly different from the value of control (p < 0.05).

Table 2. The Kinetic Parameters of Catalase in Neutrophils Obtained from Young and Old Volunteers

<table>
<thead>
<tr>
<th></th>
<th>Time After Stimulation (min)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>V<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>907.0 ± 73.3</td>
<td>925.3 ± 57.0</td>
<td>899.5 ± 86.0</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>1029.0 ± 69.8</td>
<td>962.9 ± 72.0</td>
<td>925.6 ± 77.9</td>
<td></td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>11.31 ± 2.99</td>
<td>10.46 ± 2.27</td>
<td>9.95 ± 2.08</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>10.58 ± 1.89</td>
<td>9.22 ± 1.51</td>
<td>7.33 ± 1.03</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Cells were stimulated with 10⁻⁷ M FMLP. V_m was expressed as IU/g protein. K_m was expressed as mM. Neutrophils were obtained from nine young and nine old volunteers.

Discussion

In this study we measured the accumulation of H₂O₂ in individual neutrophils by employing flow cytometry. We showed that increased neutrophil heterogeneity did not account for age-related changes in function. We also demonstrated a highly significant increase in H₂O₂ accumulation in individual neutrophils obtained from old volunteers. It is highly unlikely that the accumulation of H₂O₂ reflects increased free radical production, because previous studies have shown a modest but significant age-related impairment in the ability of neutrophils to generate superoxide anion (2,3). An increase in the production of another oxidant, such as nitric oxide, in neutrophils from older volunteers could not explain our results, as this oxidant is not...
measured by the fluorescent dye we employed. In this study, we did not demonstrate any age-related alteration in the activity of superoxide dismutase in the neutrophil. This indicates no impairment in the ability to produce H2O2 from superoxide. An alternative explanation for the persistently high level of H2O2 could be related to an impaired ability to neutralize H2O2.

In this report we found a highly significant decrease with age in the V_{max} for glutathione peroxidase. However, the protein level of this enzyme was not affected with age, suggesting that decreased activity may be due to modification of protein structure or inability to produce an activated form of the enzyme (19). A similar explanation could apply to the changes in V_{max} and K_n with FMLP stimulation as no changes in protein level occurred following activation of the oxidative burst.

Prior to stimulation with FMLP, neutrophil glutathione peroxidase V_{max}/K_n ratio was significantly higher in neutrophils from young volunteers as compared to the old. This first order rate constant approximates the fraction of H2O2 that is converted to H2O and O2 per unit time. A higher V_{max}/K_n ratio suggests a distinct advantage for neutrophils from young volunteers as compared to the old. The significant decrease over time in the V_{max}/K_n ratio probably indicates that reactive oxygen species are efficiently removed in a short time frame in neutrophils from the young volunteers. Further, the lack of change following stimulation with FMLP in the old volunteers might indicate a lack of response to increased free radical exposure and resultant persistence of these reactive species.

An examination of reaction mechanisms using Michaelis-Menten kinetic values provided additional evidence of impaired glutathione peroxidase activity with age. The reaction mechanism for glutathione peroxidase is “ping pong,” where a product (H2O) is released between the addition of two substrates, H2O2 and GSH (20). The ratio of the concentrations of two substrates has been shown to affect the enzyme K_n and V_{max}/K_n, but not to affect the V_{max} (21). In neutrophils from young volunteers, activation with FMLP resulted in a significant decrease of the V_{max}/K_n, a significant increase of the K_n for H2O2, and no change of the V_{max}. The increase in K_n for H2O2 and the decrease of the V_{max}/K_n could be the result of increasing H2O2 concentrations and decreasing GSH concentrations yielding a decrease in the [GSH]/[H2O2] ratio as indicated for the ping-pong mechanism (21). The excess H2O2 would be removed rapidly by the addition of glutathione peroxidase as indicated by the high V_{max} in neutrophils from young volunteers. In neutrophils from old volunteers, activation with FMLP was not associated with any significant decrease in the V_{max}/K_n ratio or increase in the K_n. This suggests minimal change of the [GSH]/[H2O2] due to the lack of GSH oxidation and an increase in H2O2 production during the oxidative burst. However, H2O2 is ineffectively removed due to the low activity of glutathione peroxidase in neutrophils from old volunteers as indicated by the significantly lower V_{max}. The lower activity of glutathione peroxidase also reduced the rate of GSH oxidation. This likelihood is supported by a previous report which showed no change following stimulation in GSH or GSSG in neutrophils from old volunteers (22). By contrast, in neutrophils from young subjects stimulation was associated with significant reductions in GSH and increases in GSSG (22). These conclusions apply to kinetic changes noted in an in vitro assay in which substrate concentrations are controlled. A similar circumstance may not occur in vivo.

The kinetic parameters of neutrophil glutathione reduce following activation by FMLP were similar in the young and the old volunteers. However, in the presence of lower concentrations of GSSG as a result of the reduced V_{max} for glutathione peroxidase in neutrophils from old volunteers, substrate would be reduced to levels significantly below the K_n for glutathione reductase sooner, because the V_{max} or the K_n for glutathione reductase in neutrophils are unaffected by donor age. Thus, resupply of GSH to significant levels is more easily achieved in neutrophils from young volunteers.

The GSSG reduction by glutathione reductase requires NADPH that is generated by G-6PD. Although the differences for the V_{max} and K_n were not significant at individual time points prior to and following stimulation with FMLP, it is of interest to note that they were higher in neutrophils obtained from old as compared to young volunteers. This applied particularly to time points after stimulation with FMLP when reducing potential should be maximized. In addition, when the data were summed, the V_{max} was significantly higher in the old volunteers. These findings suggest that aging is associated with an increase in the concentration of the enzyme, and the trend toward age-related increase in the K_n suggests that the enzyme is less efficient. This would necessitate a compensatory increase in its concentration. Interestingly, these observations are consistent with those found in aging rodents suggesting similar mechanisms (23).

It is unlikely that normal catalase activity, which also neutralizes H2O2, can compensate for the age-related impairment in glutathione peroxidase. The K_n for catalase is significantly larger than the K_n for glutathione peroxidase (Tables 1 and 2), even though deviation from normal Michaelis-Menten kinetics makes absolute definition of the catalase K_n difficult. This indicates that catalase has a much lower affinity for H2O2 than does glutathione peroxidase. High levels of H2O2 stimulate the oxidation of catalase to the inactive compound II (24). Thus, the range of substrate concentration at which catalase is active is limited.

Our findings demonstrate a highly specific age-related reduction in the activity of a selenium-dependent enzyme. Selenium deficiency is known to result in impairments of glutathione peroxidase activity (25). We found no age-related differences in selenium concentrations, making it extremely unlikely that deficiency of this trace element accounts for the age-related impairment in glutathione peroxidase activity in neutrophils.

In this study we clearly demonstrate increased accumulation of H2O2 in neutrophils from old volunteers. Recently much attention has focused on the role of free radical accumulation as a contributing mechanism to many age-dependent diseases. It has also been widely proposed that free radical-induced damage might explain many of the physiological and cellular declines that accompany the
AGING AND OXIDANTS IN NEUTROPHILS

M175

aging process (1). An age-related impairment in neutralizing capability of H_2O_2 by inflammatory cells could contribute significantly to age-related increases in cellular damage. Most studies have thus far been primarily derived from animal studies or in vitro cell culture models. This report provides compelling evidence in humans for an age-related compromise in the defense mechanisms against oxidant injury, and that these defects exist in vivo. Monitoring neutrophil function may prove to be useful in assessing the efficacy of interventions aimed at minimizing age-related declines in free radical accumulation. It may also be a valuable biomarker of physiological aging.

ACKNOWLEDGMENTS

This work was supported by Grants AG 07473 and AG 09458 from the National Institutes of Health; by the Arkansas Experimental Program to Stimulate Competitive Research funded by the National Science Foundation, Arkansas Science and Technology Authority and the University of Arkansas for Medical Sciences; by funds from the Department of Veterans Affairs; and by the National Center for Toxicological Research.

We thank Drs. Sudhir V. Shah, Usha Ponnappan, and Svetlana Kiosseva for their critical advice. We are grateful to Drs. Tetsuya Moriuchi and Hiroshi Suemizu for giving antibodies. We also appreciate the expert statistical assistance provided by Dr. David Gaylor, the excellent technical assistance given by Angie Stone and Jeff Woodliff, and the secretarial assistance provided by Dr. David Gaylor, the excellent technical assistance given by Angie Stone and Jeff Woodliff, and the secretarial assistance given by Mrs. Wanda Stewart.

Address correspondence to Dr. David A. Lipschitz, GRECC (182/LR), John L. McClellan VA Hospital, 4300 West Seventh Street, Little Rock, AR 72205.

REFERENCES

Received March 28, 1996
Accepted August 8, 1997