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Use of principal component analysis in conjunction with

soft computing methods for investigating total sediment

load transferability from laboratory to field scale

Gokmen Tayfur and Yashar Karimi
ABSTRACT
This study quantitatively investigates the generalization from laboratory scale to field scale using the

soft computing (expert) and the empirical methods. Principal component analysis is utilized to form

the input vector for the expert methods. Five main dimensionless parameters are used in the input

vector of artificial neural networks (ANN), calibrated with laboratory data, to predict field total

sediment loads. In addition, nonlinear equations are constructed based upon the same

dimensionless parameters. The optimal values of the exponents and constants of the equations are

obtained by the genetic algorithm (GA) method using the laboratory data. The performance of the so-

developed ANN and GA based models are compared against the field data and those of the existing

empirical methods, namely Bagnold, Ackers and White, and Van Rijn. The results show that ANN

outperforms the empirical methods. The results also show that the expert models, calibrated with

laboratory data, are capable of predicting field total loads and thus proving their transferability

capability. The transferability is also investigated by a newly proposed equation which is based on

the Bagnold approach. The optimal values of the coefficients of this equation are obtained by the GA.

The performance of the proposed equation is found to be very efficient.
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INTRODUCTION
Considerable modeling research has been devoted to sedi-

ment load predictions (Jain ; Tayfur ; Dogan et al.

, among many). Most of the existing models, one way

or another, are based on the combination of several flow,

sediment dynamics parameters and geometric character-

istics of channels. Zhu et al. () summarize the

parameters used in several commonly employed models.

Bhattacharya et al. (), using artificial neural networks

(ANN), estimated sediment loads employing dimensionless

parameters based mainly on studies of Yalin () and

Van Rijn (a). Bhattacharya et al. () considered

two scenarios by employing different sets of input variables

to predict dimensionless total load transport rate. In their
first scenario, they employed dimensional parameters of u

(flow velocity), h (flow depth), D (particle diameter), and I

(slope) and in their second scenario, they used D* (particle

parameter), T (transport stage parameter), and h/D to

predict φt (dimensionless total sediment transport rate).

They predicted suspended loads, total loads, and bed loads

for laboratory scale and field scale separately. They did

not investigate the transferability from laboratory to field

scale.

The details of the importance of the transferability

are well documented in Dogan et al. (), who investi-

gated it from laboratory scale to field scale using a

RVM (relevance vector machine) method. They selected
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parameters based on empirical methods, considering the

ones having similar statistical distribution in laboratory

and field data. As a result, they employed q* (dimension-

less stream power), τ* (Shields parameter), τ0� (Shields

parameter associated with grain or skin friction), and τ*c

(Shields parameter associated with incipient sediment

motion) as input variables for predicting total sediment

concentration (C ). It should be noted here that, in their

parameter selection process for the predictive model for

the transferability, they considered both the laboratory

and field data. Actually, they should have considered

only the laboratory data, and therefore, they had intro-

duced a bias into their model.

For the transferability study, the predictive model, in

fact, should be constructed based solely upon laboratory

data and this is exactly done in this study. In forming the

input vector for the expert models developed in this

study, the principal component analysis (PCA) is

employed. Employing PCA for this purpose is very advan-

tageous because while preserving the original information

as much as possible, it squeezes a high-dimensional data

matrix into a low-dimensional matrix in which the data

variability is explained by a fewer number of variables

(Palau et al. ). Furthermore, it achieves parsimony by

explaining the maximum amount of common variance in

a correlation matrix using the smallest number of explana-

tory concept and avoids problems of multicollinearity and

singularity (Field ). There are applications of the

PCA in the water resource engineering, hydrology, and

environmental sciences (Winter et al. ; Loska & Wie-

chula ; Ouyang ; Noori et al. ).

This study investigates the transferability from labora-

tory to field scale using PCA, ANN, and genetic algorithm

(GA) methods. Also, this study investigates the transferabil-

ity by a newly proposed empirical equation, which is

conceptually based on the Bagnold’s approach. The coeffi-

cients of the proposed empirical equation are optimized by

the GA.
DATA

Brownlie () composed an extended set of laboratory and

field data on flow discharge, channel width, flow depth,
://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
channel bed slope, mean particle diameter, gradation,

specific gravity, sediment concentration, and flow tempera-

ture. The list and details of the data were provided therein.

Uniform flow conditions in straight flumes were assumed

for laboratory experiments.

The field data were compiled from different rivers in

Pakistan, India, Japan, Colombia, and mostly in the USA.

Different sampling methods had been employed by the

researchers. Bed load measurements in some US rivers

were made with a Helley–Smith sampler. In other cases,

bed load was sampled by using a vortex trough in the

stream bed which transported the bed load material into a

sampling pit adjacent to the stream. In gravel-bed rivers,

the transport rates were determined with basket-type bed-

load samplers. Sediment discharge was measured by trap-

ping sediment in a mesh-covered hopper and pumping it

into a weighing tank. As the mixture entered the weighing

tank, the sediment settled to the bottom, while excess

water was allowed to overflow.

The concentration measurements were made by means

of depth-integrating samplers at hydraulic structures where

sufficient turbulence was present to force the total load

into suspension. In some rivers, sediment concentrations

were measured with the aid of Delft bottle samplers

which are designed so that water is allowed to pass

through the sampler while sediment coarser than

0.05 mm is trapped. Sediment particle properties, such as

median diameter and gradation, were obtained from the

particle-size distributions.

Stream flow observations were made at gauging stations.

By the measurements of flow velocity, flow depth, and the

topographic surveying of cross-sections, flow discharge

values were computed.

In line with Dogan et al. (), the following

restrictions are carried out on the data employed in this

study:

(1) B/h (where B is channel width and h is flow depth) is

greater than 4 to avoid the sidewall effects.

(2) Relative roughness, R/d50 (where R is hydraulic radius

and d50 is the mean particle diameter), is greater than

100 to avoid extreme shallow flow depth condition.

(3) Sediment size is the sand range of 0.062 (mm)<

d50 < 2:0 (mm).



Table 1 | Extracted component and loading coefficients for laboratory total load

u�h
ν

ν2

g(Gs � 1)d3
50

R
d50

q2

g(Gs � 1)d3
50

ρSu
2
�

γsd50

PC1 0.058 0.953 0.867 0.865 0.324

PC2 0.929 � 0.34 0.357 0.379 0.775

u�h
ν

: Reynolds number related to shear stress,
ν2

g(Gs � 1)d3
50

: dimensionless particle size,

R
d50

: dimensionless hydraulic radius,
q2

g(Gs � 1)d3
50

: dimensionless unit flow discharge,

ρSu
2
�

γsd50
: mobility number (related to particle size).
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(4) Geometric standard (σg) is less than 5 to avoid extreme

amount of gravel or fine material.

(5) Sediment concentration (C ) is greater than 10 ppm

to avoid inaccuracy of low concentration

measurement.

Under these restrictions, 1,190 total load records

from laboratory experiments reported in Brownlie

() and 180 total load records from field measure-

ments reported in Brownlie () are retained in this

study.
DIMENSIONLESS PARAMETERS

Sediment transport rate is mainly a function of the following

parameters (Yalin ; Dogan ):

c ¼ f(u�, q, d50, ρ, ρs, h, B, v, σg, S, um, μ, g) (1)

where c is sediment concentration (mg/L); u*¼ shear vel-

ocity (LT�1), q¼ unit flow discharge (L2T�1), d50¼
particle diameter such that 50% (median) of particle size

by weight is finer (L), ρ¼water density (ML�3), ρs¼ sedi-

ment density (ML�3), h¼ flow depth (L), B¼ channel

width (L), ν¼ kinematic viscosity (L2T�1), σg¼ sediment

gradation, S¼ slope, um¼ average flow velocity (LT�1),

μ¼ dynamic viscosity (ML�1T�1), g¼ gravitational accel-

eration (LT�2).

Dogan (), performing a dimensional analysis using

the Buckingham’s Pi theorem, first obtained 10 dimension-

less parameters and then added eight more from the

literature. In addition, R/d50 dimensionless hydraulic

radius is proposed in this study in order to reflect the effects

of channel cross-section, flow depth, and wetted perimeter

by a single parameter. Equation (2) summarizes all 19

dimensionless parameters.
C ¼ f

h
d50

,
ρ

ρs
,
umh
v

,
u�d50

v
,
u�h
v

,
hS
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,
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h
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where C is sediment concentration (ppm) and R is hydraulic

radius. Equation (2) is commonly employed in the literature

(Brownlie ; Nagy et al. ; Dogan et al. ; Bisan-

tino et al. , among many).

The PCA is used to analyze the data related to the par-

ameters in Equation (2) for the total load. Table 1

summarizes the resulting optimal dimensionless parameters,

whose definitions are given in Appendix I (available online

at http://www.iwaponline.com/nh/045/144.pdf). The pre-

dictive expert models are constructed based upon these

dimensionless parameters where sediment concentration

(C) is the output variable.
METHODS

Principal component analysis

Field () explains the aim of application of PCA as

follows:

‘Factor analysis (and PCA) is a technique for identifying

groups or clusters of variables. This technique has three

main uses: (1) to understand structure of a set of variables,

(2) to construct a questionnaire to measure an underlying

variable, (3) to reduce data to more manageable size while

retaining as much of the original information as possible.’
q
u�d50

,
B
d50

,

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1)d50

, S, σg,
R
d50

1
CCCA (2)
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As such, PCA is a technique for recognizing groups of vari-

ables and it is useful for reducing the number of data sets to

optimal size while preserving the original information as

much as possible. By reducing a data set from a group of

interrelated variables into a smaller set of variables, the

PCA achieves parsimony by explaining the maximum

amount of common variance in a correlation matrix using

the smallest number of explanatory concepts (Field ).

For this study, that means, the PCA simplifies the original

set of data records related to the dimensionless parameters

in Equation (2), synthesizing the most significant infor-

mation into a statistical model that is able to explain most

of the behavior of the sediment transport.

PCA is a mathematical procedure that uses an orthog-

onal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components (PCs).

The number of PCs is less than or equal to the number of

original variables. PCs are generated in a sequential ordered

manner with decreasing contributions to the variance, i.e.,

the first PC explains most of the variations present in the

original data, and successive PCs account for decreasing

proportions of the variance (Mahapatra et al. ). The gen-

erated set of PCs presents uncorrelated linear combinations

of the original variables and accounts for the total variance

of the original data. Note that all the PCs are generated in

such a way that they are orthogonal to each other, i.e., the

correlation between them is zero (Mahapatra et al. ).

Mathematically, the PCs are linear combinations of inde-

pendent variables, and they can be shown as (Field ):

PCi ¼ b1X1 þ b2X2 þ . . .þ bnXn þ εi (3)

where PCi is ith principal component. X1, X2,…Xn are inde-

pendent variables, which are loaded on ith principal

component. b1, b2,… bn are ith principal component loading

coefficients, presenting the relative contribution of each vari-

able (Field ), and εi is residual.

Finding an optimal number of PCs is a concern in a PCA

model. This is because reducing space dimensionality in

excess may cause a significant loss of information. On the

other hand, extracting too many PCs can lead to an overfitting

of themodel, losing its reliability and predictive capability. It is

essential to extract the right number of PCs so that the system
://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
behavior can be satisfactorily explained (Palau et al. ). In

general, the extraction of new PCs is terminated when

adding a new variable does not significantly improve the

explanatory behavior of the variable (Palau et al. ).

Before the PCA application, one has to control the

‘sample size quality’ and ‘data screening’, as presented below.

Sample size quality

The reliability of PCA strictly depends on the sample size

which is important due to the generalization of model

results from laboratory to field scale. Additionally, fluctu-

ation of correlation coefficient from sample to sample,

particularly significant in small size samples, affects the

PCA. Field () classified sample size 100 as a poor, 300

as good, and 1,000 as an excellent case. In our study,

1,190 records of data set are excellent to perform PCA.

We also carried out the KMO (Kaiser-Meyer-Olkin) cri-

terion to check the adequacy of the sample sizes. The KMO

criterion is a quantity of sampling adequacy that is expressed

as (Pett et al. ):

KMO ¼ Σ(correlation)2

Σ(correlation)2 þ Σ(partial correlation)2
(4)

The KMO criterion varies between 0 and 1. The partial

correlation represents how much of the variance is indepen-

dent of the other variables in the data set, i.e., dependent on

variables not contained in thedata set. If the partial correlation

is 0, then KMO criterion is 1, implying that the variables

aremeasuring a commoncomponent, or vice versa.According

to Field (), for the PCA, the minimum value of KMO

criterion is 0.5. This criterion is satisfied for all the samples.

Data screening

The data screening is carried out to avoid problems of multi-

collinearity (variables that are very highly correlated, R>

0.90) and singularity (variables that are perfectly correlated,

R∼ 1) in the input variables. In other words, by data screen-

ing, one eliminates highly and perfectly correlated variables.

In order to avoid the multicollinearity and singularity pro-

blem in the analysis, the variables should be inspected at

the beginning. The correlation matrix (R-matrix) can have
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useful information about the multicollinearity. The multicol-

linearity is determined by the determinant of the matrix

which should be greater than 1 × 10�5.

In this study, the dimensionless variables are subjected

to the data screening before the PCA application. As a

result, due to the multicollinearity and singularity problem,

h
d50

,
umh
v

,
hs

(Gs � 1)d50
,

q
u�d50

,
B
d50

,
vu�

g(Gs � 1)d2
50

are eliminated. After this elimination, the determinant of

R-matrix is achieved as 2.73 × 10�5.

After these pre-procedures, we are now ready to initiate

the PCA, as presented below.
Communality

The communality is known as the proportion of common var-

iance present in a variable (Field ). If it is 0, it means that

the variable does not share variance with other variables. If it

is equal to 1 then the variable has no particular variance

(Field ). The solution should explain at least half of

each original variance of a variable, such that the communal-

ity value for each variable should be 0.50 or higher. As such,

due to the communality check, B/h is eliminated.

Thus, so far, seven parameters were eliminated from 19

parameters in Equation (2). In the following section, the

remaining 12 dimensionless parameter data values are sub-

jected to PC analysis whereby the number of PCs and the

important parameters are decided.
Figure 1 | Ilustration of component rotation.
Component rotation

Note that each PC (in Equation (3)) represents a cluster.

There should be low similarities among samples that are

associated with different clusters and high similarities

among samples strongly associated with the same cluster

(Mahapatra et al. ). Factor loadings (b1, b2,… bn in

Equation (3)) reflect the degree of association between

each PC and the sample. The factor loadings of each

member of data set on the PCs are taken into account to

cluster samples into the appropriate group. The number of

clusters is decided on the basis of percentage variation

explained by the PCs (Mahapatra et al. ).
om http://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
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It is customary to use the rotation method to transform

PCs to simpler and more interpretable constructs. After

rotation, each variable will be related to one of the PCs

and each PC will have high correlation with only a small

set of variables (Mahapatra et al. ).

Figure 1 schematically presents component rotation for

the case of two components. Before the rotation, the perpen-

dicular solid lines in Figure 1 are the PCs. The components

can be visualized as axis and variables can be plotted on it

(the solid triangles in Figure 1). Once plotted, it may be poss-

ible to calculate to what degree variables load on to these

components. Generally, variables load highly on the most

important component, and load slightly on the other com-

ponent. This can be seen in Figure 1 where, before the

rotation, the variables highly load on PC1. Due to this

characteristic, interpretation and discrimination between

components can be difficult. In such a case, the rotation

technique is employed (see Figure 1). After the rotation,

the perpendicular dashed lines in Figure 1 are now the

PCs where some variables load on PC1 and some on PC2.

By this technique, the importance of each variable in each

component can be clearly seen. In this study, we exactly fol-

lowed this viewpoint and selected important variables by

considering bi values in each component.

The application of the PCA on the data employed in

this study, following the procedure outlined above, resulted

in two PCs for laboratory total load, which explain 85%

of variation (PC1¼ 52% and PC2¼ 33%). Table 1
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summarizes the number of PCs and loading factor values for

each variable. As seen, the dimensionless parameters

v2

g(Gs � 1)d3
50

,
R
d50

,
q2

g(Gs � 1)d3
50

highly load on PC1 with

0.953, 0.867, 0.865 while u�h=v, ρSu
2
�=γsd50 load on PC2

with 0.929, 0.775 loading factors, respectively. In summary,

these two PCs explain 85% of the information of the whole

original data sets and therefore five parameters loaded on

these PCs form the input vector for the expert models

(ANN, GA) to predict total sediment loads.

It is worth noting that, for our purpose in this study, the

variables which are clustered on the components are impor-

tant rather than the number of components. Furthermore, in

this study, we used the clustered variables as the model

inputs rather than the PCs. This is because PCs, as shown

by Equation (3), are a linear combination of the variables

whereas the sediment transportation has a nonlinear behav-

ior. Some studies use PCs directly as model inputs (Noori

et al. ). In this study, however, we employed the dimen-

sionless parameters, which were loaded in PCs, as the input

vectors for the predictive models.

Validation of PCA

In order to validate the findings from the PCA, we con-

ducted the split-half-sample method which randomly

divides the whole sample into two parts and applies the

PCA to each part. In the end, it satisfied communalities,

component loading, and KMO criterion for each part, thus

verifying the PCA. We further tested this validation by

employing the alpha parameter method suggested by Cron-

bach (). The α-parameter measures how well a set of

variables are implicitly related and it is expressed as (Field

):

α ¼ N2covP
s2var �

P
covvar

(5)

where N is number of variables, cov is average covariance

between variables, s2var and covvar are variable variance

and covariance, respectively. When data show multidimen-

sional structure, α-parameter has a low value. Minimum

acceptable value for α is 0.70. The computed α-value in

this study is 0.84 thus re-verifying the PCA.
://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
Discussion

Dogan (), by feature selection, reduced the number of

parameters to five for laboratory total load

umS
w

,
B
d50

,
h
d50

,
u�
w

,
u�d50

v

� �
of which umS=w and u�=w

had already been suggested by Yang (). Dogan et al.

(), by the RVM method, employed four parameters

(q*, τ*, τ*0, τ*c). This study, on the other hand, by the PCA,

obtained five dimensionless parameters in the case of lab-

oratory total load (see Table 1).

When one examines the parameters employed by Dogan

() and Dogan et al. () and the ones presented in

Table 1, it can be seen that this study obtained different par-

ameters for laboratory total load. Also, two parameters,

B=d50, h=d50 in Dogan () merged as R/d50 in our study.

Artificial neural network

ANN is a massively parallel-distributed information-proces-

sing system that has certain performance characteristics

resembling biological neural networks of the human brain.

Identification of complex patterns is a specific property of

ANN, which is commonly employed in solutions of non-

linear problems. ANN are trained with a set of input and

output data pairs, and tested for further analysis. There are

numerous applications of ANN in hydrology, hydraulics,

and water recourse management (ASCE ; Tayfur et al.

; Tayfur , among many).

In this study, the feed forward back propagation algor-

ithm is used to establish the sediment predictive model. In

a feed forward network, the input variables provided into

the input layer are multiplied by weights before reaching

the hidden layer. The net information received by hidden

layer neurons are passed through an activation function to

produce outputs which are, in turn, passed to the next layer

as inputs. The details are presented elsewhere (Tayfur ).

The dimensionless parameters presented in Table 1

formed the input variables and the sediment concentration

(C) was the output variable for the constructed three-layer

ANN model, which had neurons in between five and 10 in

the hidden layer. Tangent hyperbolic transfer function

between input and hidden layers, linear transfer function

between hidden and output layers, and Levenberg-Marquardt



Figure 2 | Measured versus predicted sediment load data (testing data): (a) ANN, (b) GA.
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as training algorithm were employed. Seventy percent of the

laboratory data set is used for the training and 30% of the

laboratory data for the testing. The performance of the

model was evaluated using the root-mean-square error

(RMSE), the mean absolute relative error (MARE), and

the correlation coefficient (R), as presented in Table 2 and

Figure 2(a).

Genetic algorithm

The GA is a nonlinear search and optimization method

inspired by the biological processes of natural selection and

the survival of the fittest (Tayfur ). They make relatively

few assumptions and do not rely on any mathematical prop-

erties of the functions (Tayfur ). Bit, gene, chromosome,

and gene pool are basic units of GA. In GA, bits create a

gene which is the model variable to be optimized. A collec-

tion of genes form a chromosome which is a candidate for

solution. Basic operations of GA are fitness evaluation, selec-

tion, cross-over, and mutation. By these operations, new

generations (chromosomes) are obtained at each iteration.

The details can be obtained elsewhere (Tayfur ).

The GA has extensive application in water resource

engineering (Sen & Oztopal ; Tayfur , among

many). A few studies have applied GA in sediment transport

studies. For example, Zhang et al. () used GA to optimize

the critical shear stress for deposition and re-suspension that

are important and effective in sediment transport models.

They concluded that GA can effectively improve the simu-

lation result of a sediment transport model in coastal areas.

Sediment transport, as is well known, exhibits nonlinear

behavior. Hence, in this study, a popular form of nonlinear

equation y ¼ α(x1)
β1 (x2)

β2 � � � (xn)βn is considered for the GA

application where x1, x2,… , xn constitute inputs, α is coeffi-

cient, β1, β2,… , βn are exponents, and y is output. The
Table 2 | Performance of models for laboratory total load data

R RMSE (m2/h) MARE

ANN 0.97 0.60 51.8

GA 0.89 1.56 175.0

Van Rijn 0.55 4.54 145.5

Ackers and White 0.65 4.20 66.0

Bagnold 0.93 2.79 179.0

om http://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
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dimensionless parameters in Table 1 are used as input vari-

ables, and volumetric sediment transportation rate is

considered as output. The proposed nonlinear equation for

laboratory total load is expressed as follows:

Ct�lab ¼ α
u�h
v

� �β1 v2

g(Gs � 1)d3
50

 !β2
R
d50

� �β3

q2

g(Gs � 1)d3
50

 !β4
ρsu

2
�

γsd50

� �β5

(6)

The GA model obtains the optimal values of the model

parameters (a, β1, β2,… , β5) in Equation (6). The model cali-

bration and testing for the laboratory data were performed

by using 70 and 30% of each data set, respectively. For the

nonlinear model, optimal model parameters were obtained
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by minimizing the objective function of mean absolute error.

At the start, parameters were randomly assigned numbers.

The user, due to the GA algorithm requirement, needs to

search the values of parameters in a pre-specified range.

GA searched α-values in [�1 to þ1], β1, β2,… , β5 in [�5 to

þ5] in this study. Another range could have been employed

as well. We tried different ranges and the model in the end

converges to the same optimal values.

Evolver GA Solver for Microsoft Excel (Palisade Corpor-

ation ) was employed in this study. In minimization, the

objective function, the Recipe Solving method, 80% cross-

over rate, 5% mutation rate, 200 population size, and

50,000 iterations were employed. The value of the objective

function is checked at each iteration to control the trend of

the error. The optimal values of the parameters are presented

in Table 3. The performance of the model for the testing case

is summarized in Table 2 and Figure 2(b).

Empirical methods

Extensive studies have been carried out for the determination

of sediment transport in alluvial channels. In the literature,

there are many empirical sediment predictive methods,

which are mainly developed using laboratory flume exper-

imental data. They are however used for the estimation of

field sediment loads, despite the fact that the applicability

and accuracy of laboratory data to field conditions is still con-

troversial. In this study, Bagnold, Ackers andWhite, and Van

Rijn empirical methods are used for the comparative analy-

sis. These methods are briefly summarized in Appendix II

(available online at http://www.iwaponline.com/nh/045/

144.pdf) and details can be obtained from the literature,

including Yang (). The results of the empirical methods

for the laboratory data are presented in Table 2.

Discussion of results

The performance of the expert and the empirical methods

for the laboratory data are summarized in Table 2. As
Table 3 | Coefficients for GA-based model

α β1 β2 β3 β4 β5

0.248 0.344 0.029 �0.657 2.267 0.113

://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
seen, ANN performs better than the other methods. 1—1

line in Figure 2(a) is also presented. According to Figure 2(a),

the model predicts the total load reasonably well. The

measured–predicted data distribution closely follows the

1–1 line with minor deviation (Figure 2(a)). ANN produced,

for the results presented in Figure 2(a), high R¼ 0.97 and

low RMSE¼ 0.60 m2/h and MARE¼ 51.8% (Table 2).

Figure 2(b) presents the prediction results that the GA

produced. The 1—1 line in Figure 2(b) shows that the GA

mostly underpredicts the measured data. For the results pre-

sented in Figure 2(b), GA produced R¼ 0.89, RMSE¼
1.56 m2/h, and MARE¼ 175% (Table 2).

The empirical methods tested here, on the other hand,

showed poor performance (Table 2), compared to ANN.

Among them, the Bagnold method produced better results

with R¼ 0.93, RMSE¼ 2.79 m2/h, and MARE¼ 179%

(Table 2), as good as the GA. Bagnold was followed by Ackers

and White, with R¼ 0.65, RMSE¼ 4.20 m2/h, and MARE¼
66% (Table 2). Van Rijn shows a poor performance, with R¼
0.55, RMSE¼ 4.54 m2/h, and MARE¼ 145.5% (Table 2).
GENERALIZATION FROM LABORATORY SCALE TO
FIELD SCALE

ANN model

The variables obtained by the PCA (see Table 1) for the labora-

tory total load formed the input vector of the ANNmodel. The

trained model was then tested against the field total load data.

Figure 3(a) presents the prediction results and 1—1 line.

GA model

We obtained the optimal values of the parameters of

Equation (6) by the GA using laboratory total load data and

presented the parameter values in Table 3. We then tested

the GA-based equation against the field total load data.

Figure 3(b) shows the model predicted results and 1—1 line.

Proposed empirical method

According to Bagnold (), the total load and transport of

bed material particles can be achieved by summation of the

http://www.iwaponline.com/nh/045/144.pdf
http://www.iwaponline.com/nh/045/144.pdf


Figure 3 | Transferability of laboratory to field scale: (a) ANN, (b) GA, (c) Equation (8).
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bed load and suspended load. The Bagnold equation for

total load is given in Appendix II. As seen, the method

uses five variables (γ, γs, τ, �u ws) and three coefficients

(tanα, eb, 0.01). This study, however, for the transferability,

proposed a new equation which is considered to be simpler

and more compact by using three variables (τb, �u, ws) and

three coefficients (α, β1, β2), as presented by Equation (7).

qt ¼ α(τb�u)
β1

ws=�uð Þβ2 (7)

where τb¼ overall bed shear stress (ML�1T�2), �u¼ depth-

averaged velocity (LT�1), ws¼ fall velocity of sediment

(LT�1), and α, β1 and β2 are the coefficients.

The optimal values of the coefficients of the proposed

equation are obtained by GA. The transferability of this

method was investigated for total load. The coefficients

were optimized by the GA method employing the laboratory

total load data. The so-obtained optimal values are α¼
0.0156, β1¼ 1, and β2¼ 0.659. The method was then tested

against field total data (Figure 3(c)). Thus, the proposed

equation is as follows:

qt ¼ 0:0156
(τb�u)

ws=�uð Þ0:659
(8)

Note that the transferability of the empirical methods

cannot be easily performed. This may be because they are

very complicated (see Appendix II).
Discussion of results

Figure 3 and Table 4 present the transferability results.

Figure 3(a) shows the results for the ANN model. The
Table 4 | Performance of models for field total load data

R RMSE (m2/h) MARE (%)

ANN 0.85 0.88 44.2

GA 0.85 1.07 83.7

Equation (8) 0.94 0.72 37.8

Bagnold 0.86 5.28 80.0
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ANN model in Figure 3(a) produced reasonable values of

R¼ 0.85 and RMSE¼ 0.88 m2/h. The 1—1 line in Figure 3(a),

however, implies that the model overall underpredicted the

measured data.

Figure 3(b) shows results for the GA model (Equation

(6)). GA produced similar results as ANN (see Figures 3(a)

and 3(b)), with R¼ 0.85 and RMSE¼ 1.97 m2/h. The 1—1

line in Figure 3(b) shows that, as opposed to ANN, GA over-

all overpredicted the measured field data.

Figure 3(c) presents the results for the GA-based Bag-

nold method (Equation (8)). As seen in Figure 3(c), it

produced satisfactory results with the highest R¼ 0.94 and

lowest RMSE¼ 0.72 m2/h. The 1—1 line in Figure 3(c)

shows that measured versus predicted data followed the

line closely, implying that the model did not, overall,

under- and overpredict the measured data. It fairly captured

the measured field data, including the low and high values.

Table 4 also presents the error measures for the predic-

tions of the field sediment total loads by the Bagnold

method, given in Appendix II. As seen in Table 4, although

the Bagnold method performs almost as well as the expert

methods, the proposed Equation (8) outperforms all of

them.
CONCLUSIONS

This study employed laboratory and field total load data,

compiled from the literature by Brownlie () to investi-

gate performance of expert (ANN, GA) and empirical

(Bagnold, Ackers and White, and Van Rijn) methods for pre-

dicting total loads. Following the restrictions to avoid

extreme shallow flow depth conditions, side wall effects,

extreme amount of gravel and/or fine material, and inac-

curacies in low concentration measurements, 1,190

laboratory total load and 180 field total load records were

used.

The number of dimensionless parameters which formed

the input vector for the expert methods were obtained using

PCA which involved several operations such as sample size

quality, data screening, communality, and component

rotation. Five dimensionless parameters (Reynolds number

related to shear stress, dimensionless particle size, dimen-

sionless hydraulic radius, dimensionless unit flow
://iwaponline.com/hr/article-pdf/45/4-5/540/372635/540.pdf
discharge, and mobility number related to particle size)

formed the input variables for the expert methods.

The expert methods were first trained (calibrated) using

70% of the laboratory data and then applied to predict

the remaing 30% of the laboratory total load data. The

performance of these models were tested aginst the

empirical methods for the laboratory data. Then, the

generalization capability of the expert methods were

investigated. For this purpose, the models were trained

using only laboratory data and then tested against the

field total load data.

This study also proposed an empirical formula based on

Bagnold’s concept for the generalization purpose. The

coefficient of the proposed formula was found by the GA

using only the laboratory data. The performance of the pro-

posed formula was tested against the field loads as well as

those of the expert methods.

The following conclusions are drawn from this study:

(1) The PCAwas applied, for the first time, to identify the effec-

tive variables in sediment transport. The predictive models

were created based upon the outcomes of the PCA. The

results proved that the PCA is beneficial in such studies.

(2) The ANN outperformed the empirical methods in pre-

dicting the laboratory total loads.

(3) GA and Bagnold methods showed comparable perform-

ance in predicting the laboratory total loads,

outperforming the other empirical methods.

(4) The ANN and GA methods were employed to investi-

gate the transferability from laboratory to field scale

for sediment transport. ANN and GA can be calibrated

with laboratory sediment data and then applied to pre-

dict field sediment data.

(5) The transferability was investigated using the proposed

Equation (8). It produced satisfactory results. It per-

formed better than the ANN, GA, and Bagnold

methods. Hence, it can be employed for predicting

field total sediment loads.

(6) The implication of this study is that these procedures can

be employed to predict field loads in ungauged basins

which are common in underdeveloped and developing

countries. Planning and operating hydraulic structures

may require establishment and maintenance of gauging

stations. Since such stations would bring about an
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economic burden especially in underdeveloped countries,

the methods developed in this study can be utilized.

(7) The field data used in this study are from natural chan-

nels. Hence, the results presented in this study may

not be applicable to mountain rivers. In such a case,

the models may have to be recalibrated and retested.

(8) As a future work, the transferability can also be carried

out for other modes of sediment transport provided that

there are sufficient data. This also implies that these

methods are data-driven and such data-limited data

restricts their applicability.
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