POTENTIATION OF NERVE BLOCK IN VIVO BY PHYSIOLOGICAL ADJUVANTS IN THE SOLUTION

S. KIRCHA, J. BARSA AND B. R. FINK

SUMMARY

One hundred and seventy-four rats received a standardized 0.4-ml injection into the left infraorbital nerve and all solutions contained lignocaine 0.25 g dl⁻¹. In groups 1–4, the solutions were isoosmotic and contained, besides sodium chloride, potassium chloride 0 or 4 mmol litre⁻¹ and glucose 0 or 20 mmol litre⁻¹ (0 or 360 g dl⁻¹). For groups 5–8, the solutions were hypoosmotic, containing sodium chloride to 0.6 of normal tonicity, but were otherwise identical to solutions 1–4. Presence and duration of sensory block were determined from the reflex sublingual electromyographic response to periodic homolateral and contralateral electrical stimulation of the upper lip. In groups 1–4, the presence of potassium chloride 4 mmol litre⁻¹ approximately doubled the duration of blockade (*P* < 0.001). Groups 5–8 showed that hypoosmolarity also doubled the duration of block (*P* < 0.001), but hypoosmolarity and potassium chloride did not have additive effects. It is concluded that addition of potassium chloride 4 mmol litre⁻¹ to isotonic solutions of lignocaine is likely to enhance their clinical effectiveness.

Systemic toxic reactions to local anaesthetic agents continue to be an important complication of several techniques of regional anaesthesia. Toxic reactions can occur either as a result of the use of a large dose of local anaesthetic and subsequent systemic absorption, or as a result of intravascular injection. It is known that impulse conduction in peripheral nerves can be reversibly inhibited by modifying extracellular factors such as the potassium concentration (Huxley and Stämpfli, 1951), the glucose concentration (Fink and Calkins, 1981) and ambient osmolarity (Fink, Barsa and Calkins, 1979) in vitro. The present study investigated these factors in an animal model to determine their potential value in clinical practice.

MATERIALS AND METHODS

One hundred and seventy-four Sprague-Dawley male rats, weighing 500–600 g were studied. The animals were fed Purina Rat Chow and tap water *ad libitum*. They had been lightly anaesthetized with pentobarbitone 30 mg kg⁻¹ i.p. A standardized injection of the maxillary nerve at the left infraorbital foramen was performed (Fink et al., 1975); the contralateral side served as a control. The injections were given double-blind with eight coded solutions (Table I), one solution per rat, using a fixed volume of 0.4 ml containing 1 mg of lignocaine hydrochloride (0.25 g dl⁻¹). Solutions 1–4 were isoosmotic (isotonic). They contained sodium chloride and, respectively, potassium chloride 0 or 4 mmol litre⁻¹ and glucose 0 or 20 mmol litre⁻¹. Solutions 5–8 were hypoosmotic, containing sodium chloride sufficient only for 0.6 isotonicity (measured by Wescor osmometer), but otherwise corresponding to solutions 1–4. The final osmolarities of the solutions are listed in Table II. Onset and duration of anaesthesia were determined by periodical electrical stimulation of the upper lip.

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of nerves</th>
<th>Relative osmoticity</th>
<th>Glucose (mmol litre⁻¹)</th>
<th>K (mmol litre⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0.6</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>0.6</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>0.6</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>0.6</td>
<td>0.2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Osmolarity (mosmol litre⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±8 ±4 ±7 ±5 ±7 ±5 ±8 ±4</td>
</tr>
</tbody>
</table>

© The Macmillan Press Ltd 1983
stimulation of the upper lip on the injected and control sides and the reflex electromyographic response of the sublingual muscles (fig. 1). The electrical stimulation consisted of 100-mV, 6-ms square-wave pulse trains produced by a Grass S44 stimulator. The stimulation was delivered through bipolar electrodes (two 25-gauge needles, 3 mm apart). The electromyographic response from muscles of the sublingual area was recorded and displayed on a Tektronix 532 cathode-ray oscilloscope and photographed with a Polaroid camera. Absence or depression of electromyographic response by 50% or more unilaterally on the injected side was interpreted as blockade. To verify that the injections were made in the correct position in the infraorbital foramen, all the animals at the end of the experiment received a control injection of a known solution—0.2 ml of 1% lignocaine. This was done to ascertain whether 1% lignocaine, applied at the site of injection, produced a block of standard duration (96 ± 18 min) (Fink et al., 1975). Animals in which the block with 1% lignocaine lasted less than 60 min were excluded from the study. Statistical significance of the group differences was evaluated by Scheffe’s test for multiple observations (Brownlee, 1965).

RESULTS

In group 1, regarded as the control group (n = 28), in which the animals received an isoosmotic solution of lignocaine + sodium chloride, with no added potassium or glucose, duration of anaesthesia aver-
aged 22 ± 11 min (± SD; fig 2). In group 2, in which
the isoosmotic solution contained in addition glu-
cose 20 mmol litre⁻¹ (360 mg dl⁻¹), the mean dura-
tion of block was 29 ± 14 min. The presence of
potassium chloride 4 mmol litre⁻¹ in the isoosmotic
solution, without or with glucose (solutions 3 and 4)
yielded mean durations of block of 50 ± 22 min and
57 ± 27 min.

The results with hypoosmotic solutions, taken in
the same sequence (solutions 5–8), showed mean
block durations of 51 ± 17, 52 ± 17, 56 ± 12 and
49 ± 12 min, respectively. The differences between
results with solution 1 and each of the other solu-
tions except solution 2 were all significant
(P < 0.001); the difference with solution 2 was less
significant (P < 0.05).

DISCUSSION

The lignocaine concentration used (0.25 g dl⁻¹) was
selected after preliminary experiments demon-
strated that this concentration produced a conve-
nient duration of blockade relative to the duration of
moderate reflex obtundation obtainable with one
i.p. injection of pentobarbitone (30 mg kg⁻¹). In
isoosmotic and hypoosmotic solutions, the presence
of potassium chloride 4 mmol litre⁻¹ (groups 3, 4, 7,
8) approximately doubled the duration of blockade.
The idea of including potassium chloride with local
anaesthetic to increase the extracellular potassium
concentration and depolarize the membrane has
been tried by several authors (Bromage and Burfoot,
1966; Aldrete et al., 1969). Aldrete and colleagues
(1969) demonstrated that inclusion of potassium
chloride 180 mmol litre⁻¹ prolonged the duration of
peripheral nerve block using 2% lignocaine solution.
Bromage and Burfoot (1966) used potassium
chloride 120 mmol litre⁻¹ in conjunction with 2% lin-
ocaine in clinical extradural anaesthesia and ob-
served a prolongation of block. However, there was
an untoward reaction, notably a convulsion, follow-
ing inadvertent perforation of the spinal dura and
injection of a large concentration of potassium.

The risk of convulsion and cardiac arrhythmia
prevented further clinical trials of local anaesthetic
solutions containing a high concentration of potas-
sium. In the present study on animals, we used a
safe, physiological concentration of potassium
chloride tested successfully in vitro on a previous
occasion (Fink and Calkins, 1981). The effective-
ness of the physiological concentration can be un-
derstood in the light of the Nernst equation, accord-
ing to which successive equal increments in the
extracellular potassium concentration will have a
geometrically decreasing effect on the membrane
potential.

The presence or absence of glucose 20 mmol litre⁻¹ in
the anaesthetic solution did not seem to influence the
duration of block. Hypoosmo-
larity of the solution in the absence of potassium
chloride also prolonged the period of block (groups
5 and 6); however, there was no additional prolonga-
tion with the inclusion of potassium chloride
(groups 7 and 8). Presumably, absorption or
equilibration of the injected solution prevented

![Graph](https://academic.oup.com/bja/article-abstract/55/6/549/259592)

Fig. 2. Duration (min) of infraorbital nerve block following injection of various solutions containing
lignocaine 0.25 g dl⁻¹. mM = mmol litre⁻¹.
cumulative prolongation of the adjuvant effects. Previous experiments have shown that ambient hypoosmolarity depresses nerve excitability, even in the absence of local anaesthetic (Fink, Barsa and Calkins, 1979) and it has been suggested that this effect may contribute to the effectiveness of hypobaric spinal anaesthesia (Barsa et al., 1979). Peripheral nerves are known to withstand this treatment in vivo without harm (Barsa et al., 1982).

CONCLUSIONS

The presence of a physiological concentration of potassium doubled the duration of blockade produced by a solution of lignocaine in plain isotonic sodium chloride. Hypoosmolarity of the solution conferred no additional advantage. One may suggest that inclusion of potassium chloride 4 mmol litre⁻¹ in isotonic commercial solutions of local anaesthetic might decrease the amount of lignocaine required for a nerve block and constitute a safety measure that deserves a clinical trial.

ACKNOWLEDGEMENTS

This study was supported by a grant from America-Mideast Educational and Training Services, Inc. and Grant No. 1RO1 GM27678-03 from the National Institutes of Health, United States Public Health Service.

REFERENCES

BRITISH JOURNAL OF ANAESTHESIA

POTENTIALISATION DU BLOC NERVEUX IN VIVO PAR DES ADJUVANTS PHYSIOLOGIQUES DANS LA SOLUTION

RESUME

Cent soixante quatorze rats ont reçu une injection standardisée de 0,4 ml dans le nerf sous-orbitaire gauche et toutes les solutions contenaient 0,25 g dl⁻¹ de lignocaine. Dans les groupes 1-4, les solutions étaient iso-osmotiques et contenaient, outre du chlorure de sodium, du KCl 0 ou 4 mmol litre⁻¹ et du glucose 0 ou 20 mmol litre⁻¹ (0 ou 360 g dl⁻¹). Dans les groupes 5-8, les solutions étaient hypo-osmotiques, contenant du chlorure de sodium à 0,6 fois la tonicité normale, mais étaient par ailleurs semblables aux solutions 1-4. L’existence et la durée du bloc sensitif étaient déterminées par la réponse électromyographique du réflexe sublingual à la stimulation électrique périodique homolatérale et contralatérale de la lèvre supérieure. Dans les groupes 1-4, la présence de KCl 4 mmol litre⁻¹ doublait approximativement la durée du bloc (P < 0,001). Les groupes 5-8 permirent de montrer que l’hypo-osmolarité doublait également la durée du bloc (P < 0,001) mais que l’hypo-osmolarité et le KCl n’avaient pas d’effets additifs. Nous en concluons que l’adjonction de KCl 4 mmol litre⁻¹ à des solutions isotoniques de lignocaine, peut sûrement augmenter leur efficacité clinique.

ZUSAMMENFASSUNG

Hundert vier und siebenzig Ratten erhielten eine standardisierte Injektion von 0,4 ml in den Nervus infraorbitalis, wobei jede Lösung Lignocain 0,25 g dl⁻¹ enthielt. Bei den Gruppen 1—4 waren die Lösungen isoosmotisch und enthielten, neben NaCl, KCl 0 oder 4 mmol litre⁻¹ und Glucose 0 oder 20 mmol litre⁻¹ (0 oder 360 g dl⁻¹). Bei den Gruppen 5—8 waren die Lösungen hypoosmotisch und außer einem NaCl von 60% normaler Tonizität mit den Lösungen der Gruppen 1—4 identisch. Vorhandenein und Dauer des sensorischen Blocks wurden aus der reflektoriischen sublingualen elektromyographischen Reaktion auf periodische homolaterale und kontralaterale Elektrostimulation der Oberlippe bestimmt. Bei den Gruppen 1—4 verdoppelte die K⁺-Konzentration von 4 mmol litre⁻¹ annähernd die Dauer der Blockade (P < 0,001). Bei den Gruppen 5—8 zeigte sich, daß Hypoosmolarität ebenfalls die Dauer der Blockade verdoppelte (P < 0,001), zusätzlicher K⁺-Gehalt jedoch keinen zusätzlichen Einfluß hatte. Der Zusatz von KCl 4 mmol litre⁻¹ zu isotonerer Lignocain-Lösung verstärkt also ihre klinische Wirksamkeit.

SUMARIO

A ciento setenta y cuatro ratas se les administró una inyección normalizada de 0,4 ml en el nervio infraorbital izquierdo, contenido todas las soluciones 0,25 g dl⁻¹ de lignocaina. Para los grupos 1 a 4, las soluciones fueron isoosmóticas y contenían,
además de cloruro sódico, cloruro potásico 0.64 mmol litro$^{-1}$ y glucosa 0.620 mmol litro$^{-1}$ (0.636 g dl$^{-1}$). Para los grupos 5 a 8, las soluciones fueron hiposmóticas, conteniendo cloruro sódico con una toxicidad del 0.6 de lo normal, pero fueron idénticas a las soluciones de los grupos 1 a 4 en todo lo demás. La presencia y duración del bloqueo sensorial se determinaron de la respuesta electromigrática del reflejo sublingual ante la estimulación eléctrica y periódica contralateral y homolateral del labio superior. La presencia de 4 mmol litro$^{-1}$, aproximadamente, de cloruro potásico prolongó al doble la duración del bloqueo ($P < 0.001$). Los grupos 5 a 8 mostraron también que la hiposmolaridad también dobló el periodo de duración del bloqueo ($P < 0.001$), pero la hiposmolaridad y el cloruro potásico no presentaron efectos aditivos. Se concluye que la incorporación de 4 mmol litro$^{-1}$ de cloruro potásico a las soluciones isotónicas de lignocaina posiblemente realzará su efectividad clínica.