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Abstract

Background: Dysregulation of miRNA and methylation levels
are epigenetic hallmarks of cancer, potentially linked via miRNA-
processing genes. Studies have found genetic alterations to
miRNA-processing genes in cancer cells and human population
studies. Our objective was to prospectively examine changes in
DNA methylation of miRNA-processing genes and their associa-
tions with cancer risk.

Methods:We examined cohort data from the Department of
Veterans' Affairs Normative Aging Study. Participants were
assessed every 3 to 5 years starting in 1999 through 2013
including questionnaires, medical record review, and blood
collection. Blood from 686 consenting participants was ana-
lyzed using the Illumina 450K BeadChip array to measure
methylation at CpG sites throughout the genome. We selected
19 genes based on a literature review, with 519 corresponding
CpG sites. We then used Cox proportional hazards models to
examine associations with cancer incidence, and generalized

estimating equations to examine associations with cancer
prevalence. Associations at false discovery rate < 0.05 were
considered statistically significant.

Results: Methylation of three CpGs (DROSHA: cg23230564,
TNRC6B: cg06751583, and TNRC6B: cg21034183) was prospec-
tively associated with time to cancer development (positively
for cg06751583, inversely for cg23230564 and cg21034183),
whereas methylation of one CpG site (DROSHA: cg16131300)
was positively associated with cancer prevalence.

Conclusions: DNA methylation of DROSHA, a key miRNA-
processing gene, and TNRC6B may play a role in early
carcinogenesis.

Impact: Changes in miRNA processing may exert multiple
effects on cancer development, including protecting against it
via altered global miRNAs, and may be a useful early detection
biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550–7.
�2018 AACR.

Introduction
Over the past 20 years, U.S. cancer incidence and mortality

have generally declined, but this trend has been driven to a
great extent by changes in lifestyle and cancer screening beha-
viors that impact the four most common cancers in the United
States (lung, breast, prostate, and colorectal; ref. 1). Death
rates from other cancers have remained largely stable over the
same period of time (1), emphasizing the need for new
medical technologies to improve the diagnosis, prognostica-
tion, and treatment of these cancers. Studies of epigenetics,
and other forms of posttranscriptional gene regulation, are
believed to hold great promise for such development. miRNAs
are small (�22 nucleotide), noncoding RNAs that bind to
messenger RNAs and regulate posttranscriptional gene expres-
sion in up to one-third of the human genome by inhibiting
gene translation (2, 3). In healthy individuals miRNAs play
important roles in regulating cell proliferation, differentiation,
and apoptosis while in cancer they exert both oncogenic and
tumor-suppressive effects (3). Global downregulation of
miRNAs has also been found in most human tumors, which
is generally thought to enhance neoplastic transformation and
metastasis (4). One mechanism through which this may be
accomplished is through altered expression of miRNA-processing
genes (5–7). Epigenetic alterations of miRNA-processing genes
(8, 9), and in particular changes in themethylation of these genes
(10–14), have been implicated in several types of cancer.
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Dysregulation of DNA methylation is likewise ubiquitous
across a variety of cancer types and considered a hallmark of
cancer (15–17). Disease- and exposure-related methylation
changes are detectable in blood, potentially allowing them to
serve as biomarkers for cancer and/or the immune response to it
(18–20). From a clinical standpoint, biomarkers measurable in
blood are attractive for their minimally invasive, cost-effective
method of collection and potential utility for screening, risk
stratification, and personalized medicine (21). From a biological
standpoint, epigenetic alterations of blood leukocyte DNA may
be a precursor to cancer, for example, due to their involvement in
inflammatory and immune response pathways (19, 22–26).
Additional evidence suggests that global miRNA levels in leuko-
cytesmay play a role in these pathways as well (27–29). However,
few studies have measured epigenetic alterations of miRNA-
processing genes in more accessible surrogate tissues such as
blood. Exploring epigenetic modifications of these genes over
timemay thus inform their use as an early detection biomarker of
cancer and potentially provide important information on the role
global miRNA dysregulation plays in carcinogenesis and/or can-
cer promotion.

The primary objective of this study is to prospectively examine
the relationship between DNAmethylation ofmiRNA-processing
genes and cancer incidence. We will also examine the cross-
sectional relationship between miRNA-processing gene methyl-
ation and cancer prevalence. Our primary hypothesis is that time
to cancer incidence will be positively associated with increased
DNA methylation in miRNA-processing genes. We also hypoth-
esize that cancer prevalence will be positively associated with
increased DNA methylation of miRNA-processing genes, after
adjusting for time between diagnosis and blood draw in addition
to other covariates.

Materials and Methods
Study population

In 1963, the Normative Aging Study (NAS) was established by
the U.S. Department of Veterans Affairs with an initial cohort of
2,280 healthy male veterans who were living in the Boston area;
were of ages 21 to 80; and had no history of hypertension,
cardiovascular disease, cancer, diabetes, or other chronic health
conditions. From 1963 to 1999, 981 (43%) participants died and
470 (21%) were lost to follow up. Our previous study using NAS
data (30) foundno significant differences in subject characteristics
[e.g., age, body mass index (BMI)] between participants lost to
follow up and the 829 still active in the study as of 1999.
Participants were recalled for in-person follow up every 3 to 5
years, and beginning in 1999 these visits included 7-mL blood
samples for genetic and epigenetic analysis. All participants were
asked to fast and abstain from smoking prior to their morning
visit. From January 1, 1999, to December 31, 2013, 802 of 829
participants (96.7%) consented to blood donation and 686 were
randomly selected for whole-epigenome analysis (n ¼ 1379
samples) using the Illumina 450K BeadChip array; our prior
analysis also found no differences in characteristics between this
randomly selected subset and the full population of 802 partici-
pants (31). Median age at first blood draw for these participants
was 72 (range: 5–100). Data including blood samples, physical
examinations, and questionnaires were collected from these par-
ticipants at each visit for a total of 1 to 4 visits separated by a
median interval of 3.5 years (IQR: 3.1–5.7 years). The NAS was

approved by the institutional review boards of all participating
institutions, and all participants provided written consent. This
analysis excludes 18 participants of nonwhite race (to minimize
potential confounding by genetic ancestry) as well as participants
with a diagnosis of unspecified malignancy (24 pre-1999 diag-
noses and 20 diagnoses occurring between 1999 and 2013),
leaving 624 participants for analysis. Of these, 193 (31%) had
methylation measured at one time point, 288 (46%) at two, 139
(22%) at three, and four (1%) at four.

Cancer diagnosis
Information on medical history obtained from questionnaires

was confirmed via blinded medical record review, and included
cancer diagnoses and comorbidities. Of 624 participants included
in this analysis 182 (29%) reported prevalent cancers (54 pros-
tate, 82 skin, 16 colorectal, 5 lung, 4 bladder, 21 others) prior to
their first blood sample collection and 132 (21%) developed
incident cancer (38 prostate, 50 skin, 9 lung, 5 colorectal, 5
bladder, 25 others including leukemia, lymphoma, brain, etc.)
during followup.Median follow-up time from first blood draw to
cancer diagnosis/censoring was 10.1 years (IQR: 5.8–12.7 years).

Methylation measurement
We identified 19 candidate miRNA-processing genes through:

(i) a PubMed literature search for genes directly involved in
miRNA biogenesis and degradation, (ii) a GeneCard search for
additional genes modifying the expression of those genes iden-
tified in step (i), and (iii) a second PubMed search to identify
associations between cancer and either up- or downregulation of
any of the genes identified in steps 1 and 2 (Fig. 1). We identified
30 genes as being involved in miRNA processing but without a
link to cancer, which were excluded from subsequent analysis.
Methylation of each CpG site within and up to 50 kb upstream of
each gene of interest was examined (to ensure proper character-
ization of promoter regions). We ultimately identified 519 CpGs
on 19 genes as candidates for analysis; full details on these CpG
sites can be found in our Supplementary Materials (Supplemen-
tary Table S1).

For methylation analysis, DNA was extracted from the buffy
coat using theQIAampDNABloodKit (Qiagen). A total of 500ng
of DNA was used to perform bisulfite conversion using the EZ-96

Figure 1.

Roles of candidate genes in miRNA biogenesis. Figure 1 represents the
involvement of each candidate gene of interest in distinct step(s) of miRNA
processing both within and without of the nucleus. It also labels distinct
precursormiRNAproducts generated up tomRNA silencing in the RNA silencing
complex (RISC). Critical miRNA processing genes/steps are bolded.
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DNA Methylation Kit (Zymo Research). To limit chip and plate
effects a two-stage, age-stratified algorithmwasused to randomize
samples and ensure similar age distributions across chips and
plates. We randomized 12 samples (sampled across all age quar-
tiles) per chip, and then randomized chips to plates.Wemeasured
DNA methylation of CpG probes using Illumina Infinium
HumanMethylation450 BeadChip (32). Quality control analysis
was performed to remove samples with >1% of probes that had a
detection P > 0.05, or probes with P value > 5% samples with a
bead count < 3 orwith >1% sampleswith a detection P > 0.05. The
remaining samples were preprocessed using Illumina-type back-
ground correction (33) and normalized with the dye-bias (34)
and BMIQ (35) adjustments to generate methylation b-values,
which we then converted to M-values for statistical analysis (36).

Missing data
Of the 481,462 CpG sites from 1379 samples (total

663,936,098) processed, 10,406,437 (1.6%) CpGmeasurements
were missing after quality control and data preprocessing. Of the
519 CpG sites of interest from 1,379 samples (725,354 values
total), 11,094 values (1.5%) were missing. All 519 CpG sites of
interest had less than 10% missing data, and 94.0% of them had
less than 5%missing data across the 1,379 samples. Using the full
dataset, we used the K Nearest Neighbors method to impute
missing values (37). Assuming missingness completely at ran-
dom,we took advantage of the correlated structure ofmethylation
data to estimate themissingmethylation values and impute them
in the final dataset. The univariate distributions of all significant
cancer-associated CpG sites were examined for outliers via visual
inspection and cross-checked against the methylation values
imputed in the primary dataset. For one CpG site (cg15827285)
significantly associated with cancer incidence, we identified six
outliers that were the results of imputation (i.e., missing in the
original dataset). With these observations excluded this model
was rerun, and the resultingnonsignificant results are not reported
(data available upon request).

Statistical methods
To evaluate the stability of our methylation markers of interest

across individuals and across time we calculated the median and
interquartile range (IQR) of allmethylation values at thefirst blood
draw as well as the three-year intraclass coefficient (ICC; Supple-
mentaryTable S1). For the ICCcalculation,we restrictedour sample
to the first two visits per each participant (excluding participants
with only a single visit) and only to visits between two and four
years apart (339/466 or 73% of all participants with at least two
observations). ICCs were then calculated separately for each CpG
site using a mixed linear regression model only adjusting for
technical variations and cell-type abundancies. A descriptive anal-
ysis using data at the first blood draw evaluated differences across
subject characteristics by cancer status (cancer-free vs. prevalent
cancer vs. incident cancer vs. unspecified) using x2 and Kruskal–
Wallis tests for categorical and continuous variables, respectively.
For the cancer incidence analysis, we examined the relationship
between time-dependentmiRNA processing genemethylation and
time to cancer diagnosis via Cox proportional hazards models.
Methylation measures obtained after a diagnosis of cancer were
excluded from this analysis. As with our prior analyses, all multi-
variate models included three principal components that we pre-
viously showed could adjust for DNACpGmethylation processing
batch, white blood cell counts (WBC), and proportion neutrophils

to account for technical variation and potential disease-related
alterations in white blood cell types (31) based on the method by
Houseman and colleagues (38). On the basis of our previous work
with methylation and cancer in this cohort (19), we additionally
included age, BMI, education, smoking status, smoking pack-years,
and alcohol consumption (dichotomized as reporting 0–1 vs. 2þ
drinks per day on average) as covariates.

For the cancer prevalence analysis, we used generalized esti-
mating equations (GEE) to examine associations between cancer
prevalence andDNACpGmethylation according to the following
model equation:

Yijk ¼ b0k þ b1ktij þ b2kI tij > Di
� �þ . . .þ eijk

where Yijk is the the kth methylation marker of subject i at time tij
(i.e., each methylation marker was examined individually, in its
own model), b0k is the intercept, b1k is the regression coefficient
for temporal trend,b2k is the regression coefficient for Iðtij > DiÞ to
denote the effect of cancer diagnosis (DiÞ on methylation marker
(i.e., an indicator variable forwhether themethylationmarkerwas
measured after cancer diagnosis), and eijk the residual error term.
Various linear combinations of coefficients in this model repre-
sent the average increases in methylation (as measured in stan-
dardized units) over time and for participants who are cancer-free
versus those who have already developed cancer. All cancer
prevalence models adjusted for the same covariates as above. All
incidence and prevalence analyses adjusted for multiple testing
using the Benjamini–Hochberg false discovery rate (FDR; ref. 39),
based on the number of tests performed per each candidate gene.

Finally, we conducted several sensitivity analyses. First, for all
analyses of DICER1 and DGCR8 methylation, we examined the
effects of including SNPs on those genes that are available in the
NAS dataset (rs1640299, rs3742330, and rs13078). Next, we
performed two analyses using data from The Cancer Genome
Atlas (TCGA). We first examined Pearson correlations between
methylation at each of our significant CpG sites and RNA levels in
both skin and prostate cancer tissue (the most common cancer
types in the NAS). We then conducted a case–control analysis of
each of our significant CpG sites using TCGA prostate tissue (due
to lack of healthy skin tissue, skin cancer could not be analyzed)
viaunpaired t test (so as tomaximize sample size for comparison).
We conducted allNAS analyses in SAS v.9.4 and all TCGAanalyses
in R v.3.4.2, and changeswere considered statistically significant if
the FDR-corrected P value was less than 0.05 (40). Both FDR and
Bonferroni-corrected P values are reported in the complete results,
available in our Supplementary Materials.

Results
Select participant characteristics are presented in Table 1. Brief-

ly, age varied by cancer status (P < 0.0001), with incident cancer
cases younger and prevalent cases older than those remaining
cancer-free. There were no other significant variations in partic-
ipant characteristics. For the Cox proportional hazards models,
results significant at P < 0.05 are presented in Table 2; complete
results are available in Supplementary Table S2. Prior to adjusting
for multiple tests a total of 44 (19 hypermethylated, 25 hypo-
methylated) CpG sites on 16 genes were significantly associated
with time to cancer diagnosis. After FDR adjustment a total of
three CpG sites (1 hypermethylated, 2 hypomethylated)
remained significantly associated with time to cancer diagnosis
at FDR < 0.05: cg23230564 on Drosha (HR ¼ 0.66, FDR ¼ 0.05),
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and cg06751583 and cg21034183 on TNRC6B (HR ¼ 1.62 and
0.56, respectively, FDR ¼ 0.04 for each). When using the more
stringent Bonferroni correction for multiple testing, two of these
three CpG sites remained significantly associated with time
to cancer diagnosis while cg06751583 became nonsignificant
(P ¼ 0.08).

For the GEEmodels of prevalent cancers, results significant at P
< 0.05 are presented in Table 3; complete results can be found in
Supplementary Table S3. Briefly, prior to FDR adjustment 30 (14
hypermethylated, 16 hypomethylated) CpG sites on 16 genes
were associated with cancer prevalence. After adjusting for mul-
tiple tests, one CpG site remained significantly associated with
cancer prevalence at FDR < 0.05: cg16131300 on Drosha (b ¼
0.055, FDR ¼ 0.04). This CpG remained significantly associated
with prevalent cancers after Bonferroni correction. For both the
cancer incidence and the cancer prevalence analyses of DGCR8
and DICER1, we found no CpG sites associated with cancer
regardless of whether data on SNPs were included in our models
(results available upon request). Supplementary Table S4 shows
the correlations between methylation of our significant CpG sites
and RNA expression in TCGA cancer tissue. In skin cancer,
methylation at cg16131300 in DROSHA (r ¼ 0.31, P < 0.01) as
well as cg06751583 (r ¼ 0.25, P ¼ 0.01) and cg21034183 (r ¼
�0.21, P ¼ 0.03) in TNRC6B was significantly and positively
correlatedwith RNA expression. In prostate cancermethylation of
cg23230564 (r ¼ 0.27, P < 0.01) and cg16131300 (r ¼ 0.12, P ¼
0.01) in DROSHA was significantly and positively correlated
with RNA expression, as was methylation of cg06751583 in
TNRC6B (r ¼ 0.30, P < 0.01). We also observed a marginally
significant positive correlation between methylation at
cg21034183 in TNRC6B and RNA expression (r ¼ �0.08, P ¼
0.08). Finally, our case–control analysis examining TCGA pros-
tate cancer tissue was only able to validate one of our four
significant findings. We found that methylation of cg23230564
in DROSHA was significantly lower in cancer tissue compared
with normal (normal mean methylation M ¼ 2.19 in tumor and
2.51 in normal tissue; P < 0.01).

Discussion
To our knowledge, this is the first study examining prospec-

tive relationships between alterations of DNA methylation of
miRNA-processing genes in blood leukocyte DNA and cancer

Table 1. Participant characteristics at first blood draw by cancer status

Total Cancer-free
Prevalent
cancer

Incident
cancer

Unknown
(excluded) P

N 310 182 132 44
Age (years) 72.5 � 6.9 72.1 � 6.8 74.3 � 6.7 70.7 � 6.6 72.4 � 7.1 <0.0001
BMI 28.1 � 4.1 28.4 � 4.3 27.7 � 3.6 28.2 � 4.2 27.3 � 3.4 0.25
Education
�High school 174 (26%) 87 (28%) 44 (24%) 27 (21%) 16 (36%) 0.43
Some college 328 (49%) 149 (48%) 89 (49%) 71 (54%) 19 (43%)
College grad 166 (25%) 74 (24%) 49 (27%) 34 (26%) 9 (21%)

Smoking
Never 193 (29%) 78 (25%) 58 (32%) 41 (31%) 16 (36%) 0.10
Current 27 (4%) 16 (5%) 2 (1%) 8 (6%) 1 (2%)
Former 448 (67%) 216 (70%) 122 (67%) 83 (63%) 27 (61%)

Pack-years 21.1 � 25.2 21.3 � 24.5 21.6 � 26.8 21.8 � 25.6 15.0 � 21.7 0.30
Alcoholic drinks
0–1/day 537 (80%) 257 (83%) 139 (76%) 110 (83%) 31 (71%) 0.09
2þ/day 131 (20%) 53 (17%) 43 (24%) 22 (17%) 13 (30%)

Table 2. Cox model results where P < 0.05 (n ¼ 442)

CpG Gene HR P FDR

cg23230564 DROSHA 0.66 <0.01 0.05a

cg06751583 TNRC6B 1.62 <0.01 0.04a

cg21034183 TNRC6B 0.56 <0.01 0.04a

cg01780585 AGO1 0.46 0.02 0.41
cg24492446 AGO2 2.16 0.01 0.48
cg11598062 AGO2 0.67 0.01 0.48
cg09815962 AGO2 1.50 0.02 0.48
cg11130692 AGO2 0.45 0.02 0.48
cg14650175 AGO2 1.74 0.02 0.48
cg15936375 AGO2 1.56 0.04 0.56
cg00405484 AGO2 0.62 0.04 0.56
cg10010182 AGO2 0.76 0.04 0.56
cg08444833 AGO2 0.72 0.04 0.56
cg15717330 AGO2 1.32 0.05 0.56
cg06007675 AGO2 1.26 0.05 0.56
cg03988279 AGO3 0.74 0.04 0.43
cg05930400 AGO4 0.71 0.04 0.44
cg15107202 BCDIN3D 0.78 0.03 0.42
cg03373091 DDX17 2.04 <0.01 0.06
cg02917540 DDX17 1.90 0.01 0.06
cg13604020 DDX17 0.67 0.03 0.18
cg17829984 DDX5 0.64 0.02 0.34
cg01901579 DICER1 1.35 0.03 0.33
cg23488578 DICER1 0.73 0.03 0.33
cg13997647 DICER1 0.55 0.04 0.33
cg00580354 PRKRA 0.70 <0.01 0.07
cg27480241 PRKRA 0.62 0.01 0.07
cg13151361 PRKRA 0.75 0.05 0.38
cg17629322 RAN 1.24 0.02 0.39
cg22265988 TARBP2 0.78 0.03 0.45
cg06420129 TNRC6A 0.77 0.03 0.36
cg08811227 TNRC6A 1.73 0.04 0.36
cg27407707 TNRC6A 0.58 0.04 0.36
cg01949902 TNRC6B 0.62 0.02 0.12
cg15462501 TNRC6B 0.68 0.03 0.19
cg14523804 TNRC6C 1.53 0.01 0.21
cg00142402 TNRC6C 1.64 0.01 0.21
cg12072376 TNRC6C 0.74 0.01 0.21
cg07787614 TNRC6C 1.29 0.02 0.21
cg26740249 TNRC6C 1.22 0.02 0.21
cg00423030 TNRC6C 1.28 0.03 0.22
cg18748888 TNRC6C 2.12 0.05 0.29
cg15646497 XPO5 0.51 0.01 0.11
cg01849007 XPO5 1.48 0.01 0.11
aStatistically significant at FDR < 0.05.
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risk. These results suggest relationships between DNA methyl-
ation of two miRNA-processing genes (DROSHA and TNRC6B)
and cancer. DNA methylation of three CpGs, one on Drosha
and two on TNRC6B, was prospectively associated with time
from sample collection to cancer diagnosis. Methylation of
another CpG (also on Drosha) was associated with cancer
prevalence in this cohort, suggesting that these genes may play
a role in cancer and that these CpG sites may be useful for
cancer detection.

cg23230564 is located in anmRNA-encoding area of theDrosha
gene body. Both up- (10) and downregulation (41, 42) ofDrosha
have been found in various cancer cells. However, in humans
SNPs in Drosha have been associated with risk of breast (43, 44)
and bladder (45) cancer as well as lung cancer recurrence (46).
Emerging evidence suggests that methylation of CpG sites in the
gene body region can stimulate transcriptional elongation (47).
Our analysis of TCGA data found that increased methylation at
this CpG site was associated with increased DROSHA RNA
expression, and found lower methylation at this CpG site in
prostate cancer tissue compared with normal. If confirmed in
other cohorts, this protectivefindingwould be consistentwithour
hypothesized protective effect of greater miRNA processing gene
expression on cancer. Future research should explore prospective
cross-talk between cg23230564 methylation and miRNA expres-
sion levels in blood from cancer patients to explore the potential
mechanistic explanations for this association outlined above.
Paired blood–tissue studies could also examine the extent to
whichDNAmethylationof cg23230564 correlates betweenblood
and tumor tissue. In addition, this CpG site demonstrated only
modest variation in methylation at the first blood draw (IQR ¼

0.13) and strong ICC (0.68), suggesting that it is not highly
variable in the population and is relatively stable over time,
meaning it may be useful as a potential biomarker.

Another protective association was identified at cg21034183
on TNRC6B, located in an mRNA-encoding area of the 50UTR of
TNRC6B. Conversely DNA methylation of the other CpG site
identified on TNRC6B, cg06751583, was positively associated
with time to cancer incidence. This CpG site is within the TSS200
region, suggesting that it affects gene expression. The differential
effects between these two CpG sites may be reflective of hydro-
xymethylation at oneCpG site andmethylcytosinemethylation at
the other, resulting in opposite effects on gene expression and
therefore (potentially) disease risk. However this explanation is
not supported by our TCGA analysis, which found DNA meth-
ylation at both sites to be positively associated with gene expres-
sion in cancer tissue. Our case–control analysis also could not
validate our findings. One potential resolution to these contra-
dictions comes from an in vivo study (48) that identified down-
regulated H3K36me3 around cg21034183 in cancers. H3K36 has
been shown in vitro to inhibit gene expression (49–52). As no
significant histone modifications have been identified in the
region of cg06751583, a mechanism through H3K36me3 may
explain these contradictory results. With a low IQR (0.08) at the
first blood draw and a high ICC (0.70), cg21034183 may have
sufficient between- and intra-individual stability to be a useful
biomarker, compared with cg06751583, which was stable
between individuals at the first blood draw (IQR 0.04), but not
over time (ICC ¼ 0.08). However the lack of validation in our
TCGA case–control analysis suggests that our results should be
interpretedwith caution and that further studies ofmethylation at
these loci in cancer are necessary.

The CpG site significantly associated with cancer prevalence,
cg16131300, is located within an mRNA-encoding area of the
50UTR region of Drosha 62 kb away from cg23230564. Given
that methylation at cg16131300 was associated with cancer
only postdiagnostically, this may suggest a possible relationship
to cancer prognosis or progression rather than development.
However our TCGA validation analysis failed to validate this
finding; this may reflect tissue-specific differences in methyla-
tion of cg16131300 or a relation to cancer progression. In
addition the low interindividual variation (IQR ¼ 0.01) cou-
pled with the low ICC (0.04) suggests that this CpG site may be
dynamic over time. This may include a sensitivity to cancer
development, reflected in its low consistency over time and the
association with postdiagnosis cancer only. However, the lack of
validation in our TCGA case–control analysis suggests that this
is not the case, thus our results should be interpreted with
caution until they can be validated. Some studies have associ-
ated Drosha with cancer-related death in humans (53–55).
Another possibility is that methylation of Drosha is a mecha-
nism by which tumors evade the immune response, as dem-
onstrated in vitro by miRNA-based reprogramming of dendritic
cells by lung tumors (56). Other in vitro studies have also
proposed a role for Drosha expression (29) and/or numerous
miRNAs in immune system functioning (57–59). Drosha
deletion in T cells has also been found to produce severe
inflammation in mice (60), raising the possibility that epige-
netic silencing of Drosha in blood leukocytes may be a method
by which cancer promotes inflammation. Future studies should
also explore Drosha expression in relation to inflammation, the
immune response, and cancer progression.

Table 3. GEE results where P < 0.05 (n ¼ 624)

CpG Gene b P FDR

cg16131300 DROSHA 0.05 <0.01 0.04a

cg09786420 ADAR 0.08 0.01 0.45
cg27026509 AGO1 0.04 0.04 0.57
cg00175844 AGO2 �0.05 0.01 0.25
cg00405484 AGO2 �0.08 <0.01 0.25
cg01980793 AGO2 �0.08 0.02 0.38
cg04476876 AGO2 0.04 0.03 0.38
cg07281647 AGO2 �0.04 0.02 0.38
cg11130692 AGO2 �0.04 0.03 0.38
cg14301764 AGO2 �0.07 <0.01 0.09
cg14484434 AGO2 �0.05 0.03 0.38
cg14835938 AGO2 �0.08 0.05 0.47
cg17050632 AGO2 �0.08 0.04 0.42
cg21208682 AGO2 �0.09 0.02 0.38
cg25071674 AGO2 0.06 0.03 0.38
cg02927292 AGO3 �0.05 0.04 0.67
cg07875848 BCDIN3D �0.04 0.01 0.19
cg27416957 DDX17 0.04 0.04 0.68
cg01795697 DDX5 �0.03 0.05 0.81
cg26372423 DGCR8 �0.02 0.05 0.71
cg23126376 DICER1 0.08 0.03 0.67
cg00460704 PRKRA �0.07 0.04 0.78
cg01060409 RAN 0.08 0.01 0.17
cg02785870 TNRC6A 0.05 0.05 0.62
cg03156546 TNRC6A 0.1 0.01 0.25
cg14311088 TNRC6B 0.04 0.02 0.38
cg00175441 TNRC6C 0.08 0.01 0.46
cg05736847 TNRC6C 0.06 0.03 0.46
cg18211066 TNRC6C �0.11 0.03 0.46
cg14454015 ZCCHC6 0.04 0.04 0.31
aStatistically significant at FDR < 0.05.
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This analysis has several limitations of note. First, the NAS
population is not representative. These subjects are older, white,
andmale; live in Boston; andhave ahistoryofmilitary service, all of
whichmay affect the results of the above analyses. Thus, validation
in other, more diverse populations is necessary before these find-
ings can be applicable to the general population. While we
attempted a simple validation using prostate cancer tissue data
from TCGA, the lack of available prospectively collected DNA
methylation data from blood collected prior to cancer diagnosis
is a serious limitation to our findings. As the two datasets are very
heterogeneous in terms of data collection methods, population
characteristics, etc. future research to replicate our findings is
warranted. Furthermore, DNA methylation and gene expression
changes in cancer tissuemaynot reflect the biological dysregulation
measured by disease-related changes in blood DNA methylation
(e.g., inflammation and immune response). Thus validation of our
findingsmay bemore appropriate in a cohort with available blood
DNA data. Second, cancer data from the NAS are limited. Lack of
information on mode of detection for prostate cancer, and lack of
sufficient sample size formost other cancer types present, prevented
a more detailed exploration of specific cancers. Because of the
biological heterogeneity of different cancer types, these findings
may not be generalizable to all cancers and should be verified in
specific cancer types. However, this limitation was somewhat
obviatedby the use of blood leukocyteDNA for epigenetic analysis,
as it reflects immune and inflammatory pathways and systemic
exposures common tomany different cancer types. Thus, all-cancer
incidence may be an appropriate outcome for this analysis.

In conclusion, these findings suggest that methylation changes
to two miRNA processing genes, Drosha and TNRC6B, may be
important early events in cancer. Methylation changes at specific
CpG sites on these genes may also reflect the alteration of miRNA
biogenesis and/or inflammatory pathways that in turn affect
cancer development. Alternatively, the proper functioning of
these pathways inparticipantswhodidnot develop cancer despite
their advanced age and the lengthy follow up of this cohort may
point to the important role of miRNAs in tumor suppression
elucidated in other, prior research. Extensive additional research is
necessary to validate these findings in other, more diverse cohorts
(e.g., younger, female, and racial/ethnic minority populations,
and with greater numbers of site-specific cancers). With sufficient
validation and further study, these and other epigenetic events
occurring early in cancer development could potentially be used
in the future to develop an early detection biomarker for cancer. If
confirmed these relationships could also reveal important infor-
mation about a potential host of cancer-promoting (or suppres-
sing) effects at the cellular level. Taken together, these findings

indicate that epigenetic alterations ofmiRNAprocessing genes are
a rich potential field of study, and future research should attempt
to elucidate their additional potential clinical applications in
cancer research and clinical care.
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