
Specifically, implicating hypoxia in regulation of CD24, a
previous study identified CD24 among a multitude of genes
induced by hypoxia in human umbilical cord vein endothelial
cells (30). To determine whether a similar regulatory circuit
is operative in cancer cells from 2 common malignancies
showing CD24 overexpression (8, 31), we exposed human
PC-3 (prostate cancer) and UMUC-3 (bladder cancer) cell
lines to hypoxia, and evaluated CD24 mRNA and protein
levels. Exposure of cells to hypoxia increased CD24 mRNA by
12 hours, reaching a maximum at 24 hours (Fig. 1B and
Supplementary Fig. S2A). Protein levels were seen to parallel
this increase in mRNA in UMUC-3, PC-3, and 2 additional cell
lines, KU-7 and LNCaP, derived from human bladder and
prostate cancers, respectively (Fig. 1B and Supplementary

Fig. S2B). Next, we evaluated the association of tumor hypoxia
to CD24 expressionin vivo. Immunohistochemistry revealed
the pattern of CD24 expression as a function of pimonidazole
(hypoxyprobe) staining in human bladder cancer xeno-
grafts. Supporting thein vitro findings above, CD24 protein
expression was found to be elevated in hypoxic areas of the
tumor (Fig. 1C).

Isolation of the human CD24 gene promoter
Exposure of UMUC-3 and PC-3 cells to hypoxia also led to an

increase in HIF-1a protein, but not mRNA, and this preceded
the increase in CD24 expression (Fig. 1D and Supplementary
Fig. S2A). Because elemental iron is a critical factor for proline
hydroxylation of HIF-1a, iron chelators such as deferoxamine
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Figure 1. A, molecular concepts map (14, 15) of a core transcriptional signature of the Ral GTPase pathway [Ral core signature shown as yellow ringed node,
generated from genes expressed 2-fold higher in control as compared with Ral siRNA–treated cells (n ¼ 32)]. Each node represents a molecular concept or a
set of biologically related genes, whereas node size is proportional to the number of genes in the concept. The concept color indicates the concept type
according to the legend. Each edge represents a significant enrichment (P < 1E�4), with the thick edge representing the most significantly enriched
concept. Several concepts implicate hypoxia (nodes #1, #3, #4, and #5), whereas others are likely reflective of known functions of Ral, including acting
downstream of Ras (node #7) or small T antigen (node #6). B, UMUC-3, PC-3 cells were exposed to hypoxia for various time periods as indicated. RNA
extracted from these samples was analyzed by real-time quantitative PCR for CD24 mRNA expression. Paired lysates were analyzed for CD24 protein
expression by Western blot analysis. �, significant difference compared with samples at 0 hour (P < 0.01). C, immunohistochemical evaluation of CD24
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sections.Magnification indicated.D, UMUC-3 andPC-3 cells exposed to hypoxia for various timeperiods as indicated examined forHIF-1a andCD24protein
andmRNA expression. Left, �, significant difference to the samples at 0 hour (P < 0.01). Right, �, significant difference to the samples at 0 hour (P < 0.05). B–D,
blots are representative of 3 separate experiments. Error bars are SD of triplicate samples from 1 of 3 independent experiments.
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(DFO; ref. 32) are widely used in HIF-1 studies as surrogates of
hypoxia (33). We hence treated UMUC-3 cells with 50mmol/L
DFO, which led to a 3-fold increase in CD24 protein expression
after 12 hours (Supplementary Fig. S2C).

Thesefindings suggested the presence of hypoxia responsive
cis-acting elements (HRE) in the CD24 promoter. There have
been 2 published CD24 promoter sequences, thefirst from a
pooled sample of human DNA (34), whereas the second from a
population of B lymphocytes (35). Unfortunately, these 2
promoters had considerable mismatched sequences between
each other and the partial promoter from GenBank (Supple-
mentary Fig. S3). Therefore, to determine the consensus CD24
promoter sequence in UMUC3 cells, we cloned a 1,139 bp
region that encompassed thefirst 79 base pairs of the CD24 50

untranslated region (UTR). Comparing the UMUC3 sequence
to the previously reported sequences for the CD24 promoter,
several mismatches and deletions were observed (Supplemen-
tary Fig. S3). To ensure a consensus CD24 promoter sequence,
we cloned the same region in 4 additional cancer cell lines
(LUL2, EJ, J82, and LNCaP) and 2 noncancerous cell lines:
telomerase (TERT) immortalized urothelial cell line and
human embryonic kidney cells (293T). Here, we report and
then use a consensus promoter whose sequence is deposited

in GenBank (accession numbers are included in the Materials
and Methods section).

CD24 gene is a transcriptional target of HIF-1a in
hypoxia

Using the cloned promoter, we generated and transiently
transfected a series of CD24 50-flanking sequence deletion
mutants driving a luciferase reporter (Fig. 2A) into UMUC-3
cells and incubated these under normoxia and hypoxia for 24
hours. Figure 2B indicates that the sequence between�100 bp
and �223 bp is critical for CD24 transcriptional induction in
hypoxia. To determine whether these sequences harbored
candidate HIF binding sites, we used Genomatix software
(36) to determine if any canonical HIF-1 binding sites existed
from �118 bp to�135 bp. We then used site-directed muta-
genesis to obliterate the putative site that was found (CGTG to
AAAA) in the luciferase reporter plasmid (Fig. 2C) and trans-
fected it into UMUC-3 cells. The mutation of the HIF-1 binding
site completely abolished the responsiveness to hypoxia (Fig.
2D), and also reduced basal expression, probably because of
reduction of detectable levels of HIF-1 expression in normoxic
cells. These results suggest that this putative HRE is necessary
for the induction ofCD24 gene in cancer cells.
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We next wanted to investigate the dependency of CD24
expression on HIF-1a levels. Transient overexpression of HIF-
1a transgene in UMUC-3 cells showed an approxiamtely 2-fold
increase in CD24 mRNA expression and an approximately 3-
fold increase in CD24 protein expression in normoxia (Fig. 3A
and B). We evaluated 4 different shRNA oligos against HIF-1a,
found similar effects, and selected HIF-1a sh-3 for further
studies (Supplementary Fig. S5D). Absence of appreciable
change in HIF-2a levels after forced induction or silencing of
HIF-1a indicates that CD24 expression is independent of HIF-
2a status (Fig. 3B). To determine the contribution of HIF-1a to
hypoxic induction of CD24 expression, UMUC-3 cells tran-
siently depleted of HIF-1a were exposed to hypoxia. HIF-1a–
depleted UMUC-3 cells failed to induce CD24 mRNA or protein
expression after exposure to hypoxia (Fig. 3A and B). To
determine if HIF-1a regulates CD24 via a direct interaction
with its promoter sequence, we conducted chromatin immu-
noprecipitation. UMUC-3 cells were exposed to normoxia and
hypoxia, and chromatin complexes immunoprecipitated with
human HIF-1a or HIF-1b antibody, and PCR amplification was
conducted using specific primers to human CD24 promoter
region encompassing the identified HRE site. Results showed

the preferential binding of HIF-1a (Fig. 3C) and HIF-1b (Sup-
plementary Fig. S4) to CD24 promoter in hypoxia compared
with normoxia. This supportsfinding from previous studies
that although HIF-1b (ARNT) is constitutively expressed, it
heterodimerizes with HIF-1a and selectively binds to hypoxia-
responsive promoter elements of selected genes (37). These
results also indicate direct transcriptional regulation of endog-
enous CD24 expression by HIF-1a.

CD24 is a critical determinant in HIF-1a–driven tumor
progression and metastasis

Both HIF-1a and CD24 overexpression are associated with
poor prognosis in multiple human cancer types (38). Wefirst
evaluated the role of CD24 expression in experimental models
of distant colonization of bladder and prostate cancer. Thefirst
using lung colonization of UMUC-3 cells after tail vein inoc-
ulation and the second using bone colonization after intrapro-
static inoculation of PC3 cells. We silenced CD24 expression in
UMUC-3 and PC-3 cells using lentiviral transduction of shRNA
targeted to 3 different oligos against CD24 (CD24shRNA) or
nontargeted scrambled control (NTshRNA). Expression of
CD24 after transfecting these oligos were evaluated separately
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in UMUC-3 as well as PC-3 cells (Supplementary Fig. S5A).
Effects of shRNAs on growth of UMUC-3 cells were assessed
(Supplementary Fig. S5B). From these 3 different oligos, we
chose to use CD24-sh-3 for all further studies. After injection
of UMUC-3 cells, we monitored the animals weekly using
bioluminescent imaging (BLI), which was shown previously
to track well with histology (52), and after 8 weeks, sacrificed
and evaluated their lungs by human-specific quantitative
real-time PCR (27). At 8 weeks, mice injected with CD24-
deficient UMUC-3 cells had lower levels of total photon
radiance than control UMUC-3 NTshRNA cells and had
significantly reduced numbers of residual tumor cells detect-
able by human-specific quantitative real-time PCR (P ¼
0.01; Fig. 4A). Similarly, CD24-depleted PC-3 cells showed
significantly lower photon radiance 3 to 5 weeks after
injection (Supplementry Fig. S5C) and higher cumulative
survival compared with (P ¼ 0.002) mice inoculated with
corresponding control PC-3 cells (Fig. 4B). This result in
prostate cells suggests a role of CD24 in lung colonization
and supports ourfindings in bladder cancer cells (14) that
CD24 expression affects lung retention of tumor cells.

HIF-1a overexpression promotes metastasis, whereas HIF-
1a depletion reduces this phenotype via alteration of a cancer
cell's ability to survive hypoxic conditions (39). To study the
contribution of CD24 in HIF-1a–mediated viability during
hypoxic stressin vitro and HIF-1a–dependent metastasisin
vivo, we generated HIF-1a shRNA-expressing UMUC-3 cells.
We silenced HIF-1a expression in UMUC-3 cells using lenti-
viral transduction of shRNA targeted to 3 different oligos
against HIF-1a or NT scrambled control. Expression of HIF-
1a after transfecting these oligos were evaluated in UMUC-3
(Supplementary Fig. S5D). Effects of these shRNAs on growth
of UMUC-3 cells were assessed (Supplementary Fig. S5E).
From these 3 different oligos, we chose to use HIF-1a-sh-3
for all studies. As expected, HIF-1a–depleted UMUC-3 cells
expressed significantly less CD24 compared with cells expres-
sing scrambled control sequence (Fig. 5A). CD24 depletion led
to a reduction in cell viability in normoxia and an even more
profound effect in hypoxic condition (P¼ 0.0320). Importantly,
this was comparable to that observed with HIF-1a depletion in
these cells (Fig. 5B). Furthermore, when CD24 expression was
restored in HIF-1a–depleted UMUC-3 cells using a CD24
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metastatic ability by BLI at various intervals. BLI signal and
survival of animals (Fig. 5E–F) showed that HIF-1a and CD24
expression are important for local and metastatic growth.
Moreover, forced expression of CD24 partially rescued meta-
static ability of HIF-1a–depleted cells.

Next, to establish the requirement for CD24 in HIF-1a
induced primary tumor growth and metastasis, wefirst gen-
erated stable HIF-1a–overexpressing, and also CD24-depleted
HIF-1a–overexpressing UMUC-3 cells. HIF-1a overexpression
in UMUC-3 cells led to a marginal increase in cell viability
compared with NTshRNA cells, whereas CD24 depletion in
HIF-1a–overexpressing cells reduced their survival (P ¼
0.021; Fig. 6B). When injected subcutaneously into mice,
HIF-1a–overexpressing UMUC-3 cells marginally increased

average tumor burden compared with UMUC-3 NTshRNA cells
(Fig. 6C). However, CD24 depletion, even in the presence of
forced HIF-1a expression, produced smaller tumors (Fig. 6C).
These modified UMUC-3 cells were inoculated via tail veinin
vivo and lung metastasis was assessed. As evaluated by visual
assessment and quantitative real-time PCR with a 12p human-
specific probe, UMUC-3 cells stably overexpressing HIF-1a
displayed more colonies in lung compared with UMUC-pcDNA
NTshRNA cells, whereas CD24 depletion even in the presence
of forced HIF-1a expression, reduced their ability to colonize
to lungs (P ¼ 0.022; Fig. 6D). These results support the role
of CD24 as an important downstream effector of HIF-1a–
mediated survival and metastasis. Furthermore, PC-3
cells stably overexpressing HIF-1a, and also CD24-depleted
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Figure 6. A, Western blot analysis of UMUC-3 cells transfected with pcDNA 3.1 vector, nontarget control shRNA (NT-shRNA), HIF-1a overexpressing, and
CD24 shRNA transduced in HIF-1a–overexpressed cells as explained in Materials and Methods. Bands were quantified as described in Materials and
Methods (numbers in figure). Data shown are representative blots of 3 separate experiments. B, monolayer cell growth of 1,000 cells/well in 96-well
plate was estimated using Live/Dead assay (Molecular Probes) after being exposed for 24 hours in normoxia and hypoxia as described. C, subcutaneous
tumor growth of engineered UMUC-3 cells in nude mice for a period of 25 days after injection. Ten mice were inoculated in each group. Tumor sizes were
measured every 4th day and quantitated as described in Materials andMethods. �, P ¼ 0.024, volume of tumors produced by UMUC-3-HIF-1aCD24shRNA
cells are significantly different form UMUC-3 NTshRNA or HIF-1a–overexpressing UMUC-3 cells. D, quantitation of in vivo lung metastasis of HIF-1a and
CD24-modified UMUC-3 cells by visual evaluation of surface lung metastases and total lung 12p quantitative PCR in mice injected via tail vein (n ¼ 8).
E, quantitation of in vivometastasis of HIF-1a andCD24modifiedPC-3 cells injected orthotopically in prostate by bioluminescence imaging (BLI; n¼ 8). Inset,
representative BLI images showing distant metastasis. Significant difference compared with BLI signal at 6 weeks postinoculation in NTshRNA group of
animals (P < 0.01). F, Kaplan–Meier curves indicating the survival as defined in Materials and Methods of nude mice injected with HIF-1a and
CD24-modified PC-3 cells.
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HIF-1a–overexpressing UMUC-3 cells were orthotopically
implanted in prostate and assessed for their metastatic ability
by BLI at various intervals. BLI signal and survival of animals
(Fig. 6E–F) showed that tumor bulk and animal survival after
inoculation of PC-3 cells depends on elevated expression of
HIF-1a, CD24, and that CD24 expression contributes to the
ability of HIF-1a to promote metastasis. To our knowledge,
this is thefirst demonstration of the effect of CD24 and HIF-
1a in a prostate orthotopic model that leads to spontaneous
metastasis.

Coexpression of CD24 and HIF-1a in human bladder
cancers

Finally, we sought to determine whether the pattern of
expression of CD24 from human tumors might support the
model that HIF-1a drives the metastatic phenotype in part via
induction of CD24 expression, as indicated by the experiments
described earlier. Hence, we examined if there is any relation-
ship between HIF-1a and CD24 protein expression by immu-
nohistochemistry in human bladder cancer tissues, using a
tissue microarray of archival tissues, using antibodies reported
before (23, 40), and scored expression as detailed in the
Materials and Methods. In total, 144 cases represented on the
array showed interpretable staining for both antibodies; of
these, 101 cases were urothelial carcinomas (the most common
type of bladder cancer in Western countries and the histology
from which bladder cell lines used experimentally herein were
derived). As reported before (24), HIF-1a showed highly var-
iable nuclear positivity with frequent background moderate to
strong cytoplasmic positivity (Fig. 7A and B). Given its
known function and prior reports in bladder cancer associat-

ing degree of nuclear positivity with key clinicopathologic
variables, HIF-1a staining was scored as % nuclear positivity.
CD24 showed variable staining among cases of urothelial
carcinoma with cytoplasmic immunoreactivity (scored as
0þ, 1þ, 2þ, 3þ on overall intensity as reported before; ref. 11),
with examples shown in Fig. 7C and D).

Among urothelial cases, we observed a significant, positive
correlation between CD24 staining and HIF-1a nuclear pos-
itivity, rs ¼ 0.29,P ¼ 0.003. In contrast, in nonurothelial
cases, CD24 and nuclear HIF-1a were not correlated signifi-
cantly (rs ¼ 0.036,P ¼ 0.84). Among the urothelial carcinomas,
the degree of correlation between CD24 and HIF-1a was
related to stage: among cases stage pTa, pT1, and pT2 (primary
tumor that has not extended beyond the bladder), CD24 and
HIF-1awere not significantly correlated (rs¼ 0.001,P¼ 1.0). In
contrast, cases showing extravesical extension of the primary
tumor (stages pT3 and pT4) showed the highest degree of
correlation (rs ¼ 0.49,P ¼ 0 < 0.001). Importantly, the most
prevalent pattern of expression of these proteins was of
expression of both at more than 2þ level (N ¼ 55), as opposed
to many fewer cases showing expression of both proteins at low
level (0þ or 1þ, N ¼ 14).

Given our observations regarding roles for HIF-1a, and
downstream, CD24, in our experimental metastasis model, we
were interested in whether staining patterns for these proteins
were associated with overall survival in thefirst 5 years
postcystectomy, where recurrence (metastasis)-free survival
contributes most strongly to overall survival (41). For these
analyses, we tested the association of HIF-1a and CD24
staining with overall survival at 60 months by the log-rank
test. For HIF-1a, we observed a nonsignificant trend toward

Figure 7. A and B, representative
0þ (0% nuclear positivity) and 3þ
(>50% nuclear positivity) staining of
HIF-1a on tissuemicroarray cores of
human urothelial carcinoma,
respectively. C and D,
representative 1þ (weak intensity)
and 3þ (diffuse, intense) CD24
staining, respectively. E, Kaplan–
Meier analysis of overall survival
after cystectomy of 101 urothelial
carcinomas from the tissue
microarray, stratified as a function of
(i) CD24 level (lowCD24 (0þ, 1þ,N¼
31) and high CD24 (2þ and 3þ, N ¼
70). Differences evaluated by log-
rank test. (ii) Similar analysis to that
of (i) but comparing survival stratified
by low HIF-1a (0þ and 1þ nuclear
positivity, N ¼ 29) and high HIF-1a
(2þ and 3þ, N ¼ 72). F, similar
analysis to that in E but examining
survival as a function of HIF-1a and
CD24 combined (HIFþCD24) score,
comparing low scores (0þ, 1þ, and
2þ,N¼16) to high scores (3þ–6þ,N
¼ 85).
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Upon CD24 overexpression in HIF-1a–depleted cells indicates
that CD24 plays an important role in HIF-1–mediated tumor
growth regardless of tumor site.

Finally, data from our clinical cohort support the relevance
of our experimentalfindings to human tumors. We observed a
significant correlation of HIF-1a and CD24, correlatingin vitro
findings of HIF-1a regulation of CD24 as initially suggested by
molecular concepts mapping. In addition, attempting to eval-
uate the output of this regulatory pathway by use of a total
score adding scores for HIF-1a and CD24, we found that we
could significantly stratify survival, independently of tumor
stage. Importantly, the most prevalent pattern of expression of
these proteins in bladder cancers was of coincident moderate
to intense (2þ or 3þ) staining of both, afinding of relevance to
potential therapeutic strategies (2, 11), which seem rational
and should be considered.

As many cancers are thought to develop and progress to
metastasis from a small number of transformed, self-renew-
ing "cancer stem cells" (51), these results implicate a role for
the HIF-1a–CD24 axis in achieving that goal. In addition, the
work presented here on human tumors shows the value of
risk stratification based on HIF and CD24 protein expression
and could serve to select patients for trials in the adjuvant or
early metastatic setting with anti–HIF-1a or CD24-directed
therapy.
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