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Abstract
Glioblastoma is characterized by high expression levels of proangiogenic cytokines and microvascular

proliferation, highlighting the potential value of treatments targeting angiogenesis. Antiangiogenic treat-

ment likely achieves a beneficial impact through multiple mechanisms of action. Ultimately, however,

alternative proangiogenic signal transduction pathways are activated, leading to the development of

resistance, even in tumors that initially respond. The identification of biomarkers or imaging parameters

to predict response and to herald resistance is of high priority.Despite promising phase II clinical trial results

andpatient benefit in termsof clinical improvement and longer progression-free survival, an overall survival

benefit has not been demonstrated in four randomized phase III trials of bevacizumab or cilengitide in

newly diagnosed glioblastoma or cediranib or enzastaurin in recurrent glioblastoma. However, future

studies are warranted. Predictive markers may allow appropriate patient enrichment, combination with

chemotherapy may ultimately prove successful in improving overall survival, and novel agents targeting

multiple proangiogenic pathways may prove effective.

See all articles in this CCR Focus section, "Discoveries, Challenges, and Progress in Primary Brain

Tumors."
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Introduction
Glioblastoma, the most common primary malignant

brain tumor, affects more than 3 per 100,000 individuals
each year. Median survival is less than 1 year in population-
based studies. Older age and lower performance status are
associated with less aggressive care and shorter survival. The
current standard of care includes maximal safe resection
followed by radiotherapy plus concomitant and adjuvant
chemotherapy with temozolomide. Elderly patients, i.e.,
those aged 65 to 70 years, who are not considered candi-
dates for combined chemotherapy and radiationmainly on
the basis of comorbidities or impaired performance status,
may be treatedwith radiation or temozolomide alone based
on the promoter methylaton status of O6-methylguanine
DNA methyltransferase (MGMT), a mediator of resistance

to alklyating chemotherapy drugs. In patients with tumors
lackingMGMT promotermethylation radiotherapy alone is
acceptable, whereas in patients with MGMT promoter
methylation temozolomide with or without radiation is
acceptable (1).

Angiogenesis has emerged as a primary target of drug
development for glioblastoma over the past decade. This
development was triggered by the disappointing outcomes
with cytotoxic drugs and the recognition that the extensive
pathologic vascularization should make this disease poten-
tially susceptible to antiangiogenic therapy. Bevacizumab, a
humanized antibody to vascular endothelial growth factor
(VEGF), received accelerated approval for recurrent glio-
blastoma in the United States and many other countries
based on radiographic response rates (2, 3). In contrast,
because of the lack of a controlled trial, bevacizumab did
not receive approval in the European Union (EU), resulting
in different standards of care between the United States and
the EU. Although randomized trials in newly diagnosed
glioblastoma patients have not demonstrated an overall
survival benefit, the final status of bevacizumab in this
setting has yet to be fully determined, as well be discussed
subsequently.Other VEGF-targeting agents either havebeen
or will continue to be explored in glioblastoma (4).

Mechanisms of Action and Resistance
The mechanisms of action of antiangiogenic therapies for

solid tumors are multiple and may act in concert to delay
tumor progression and ultimately prolong survival in several
cancers. Folkmanoriginallyhypothesized that antiangiogenic
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agents confer an antitumor effect through induction of endo-
thelial cell apoptosis, inhibition of new blood vessel growth,
obliteration of small vessels, and decreased tumor perfusion,
culminating in decreased delivery of oxygen and nutrients
("tumor starvation"; ref. 5).However, during the initial stages
of treatment, antiangiogenic agentsmay transiently "normal-
ize" abnormal tumor vasculature by reducing blood vessel
diameter and permeability, which paradoxically improves
tumor perfusion, reduces interstitial pressure, and improves
tumor oxygenation (6–8), potentially sensitizing for radio-
therapy and increasing tumor exposure to cytotoxic chemo-
therapy (ref. 7; Fig. 1). Antiangiogenic therapy may also
prevent VEGF-mediated vascular regrowth following endo-
thelial cell injury after genotoxic therapies (9–11). Antiangio-
genic agents may exhibit intrinsic antitumor activity, for
example, against glioblastoma stem-like cells (GSC) residing
in the perivascular niche (12, 13). Antiangiogenic agentsmay
interfere with VEGF-mediated recruitment of tumor-infiltrat-
ing VEGFR1 expressing monocytes (14). A potential role
exists for antiangiogenic therapy in augmenting host immu-
nity by reducing VEGF-mediated immune suppression (15)
and thereby improving the efficacy of immunotherapy (16).
The relative importance of these multiple mechanisms of
action to the therapeutic benefit of antiangiogenic therapy is
unknown, and different mechanisms may be operative in
distinct subsets of patients as well as at different stages of the
disease.
The realization that antiangiogenic therapies provide tran-

sient clinical benefit and delay tumor progression has

prompted an effort to better understand mechanisms of
resistance to this class of therapeutic agent, as discussed
subsequently. High rates of radiographic response rates and
decreased cerebral edema indicate a reduction in vascular
permeability due to interruption of VEGF-A (originally
termed vascular permeability factor) signaling (3, 6, 17).
However, a lack of antitumor effect observed in some ortho-
topic rodent xenograft models of glioblastoma (18) suggests
that angiogenesis inhibitors, such as cediranib, have limited
intrinsic antitumor activity and that their main benefit may
be limited to reductions in permeability and vasogenic
cerebral edema (3, 6, 17). Notwithstanding a better under-
standing of the potential benefits of using an optimal
dose, schedule, and drug combination, data from phase III
clinical trials (19, 20) of bevacizumab suggest that some
glioblastomas may be intrinsically resistant to antiangio-
genic therapy. Inherent vessel insensitivity to the effect of
VEGF inhibition could partially mediate this intrinsic resis-
tance (21). Several adaptive resistance mechanisms may
counteract any potential initial benefit afforded by antian-
giogenic therapy. In the setting of VEGF signaling inhibition
the tumor and its microenvironment release alternative
proangiogenic growth factors to promote VEGF-indepen-
dent angiogenesis (22–24), which may be further augment-
ed by the recruitment of proangiogenicmyeloid cells such as
monocytes, M2-skewed macrophages, granulocytes, and
myeloid-derived suppressor cells (14, 25, 26). In addition,
functional vessels are characteristically covered with peri-
cytes thatmayprotect endothelial cells fromapoptosis in the
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Figure 1. Normalization of tumor
vasculature. A, tumor vasculature
is structurally and functionally
abnormal. One potential
mechanism of action for
antiangiogenic therapies is
transient improvement in both the
structure and the function of tumor
vessels. However, sustained
antiangiogenic treatment may
eventually result in a vasculature
that is both resistant to further
treatment and inadequate for the
delivery of drugs or oxygen. B,
vessel structural patterns before,
during, and with sustained
VEGFR2 blockade. C, diagram
depicting the concomitant
changes in pericyte coverage
(green) and basement membrane
thickness (blue) before, during, and
with sustained VEGFR2 blockage.
D, changes in the balance of pro-
and antiangiogenic factors leading
to the phenotypic changes noted
above. Reprinted from Jain (98).
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face of VEGF blockade. Finally, adaptive resistance has been
characterized by a transition to a mesenchymal and more
invasive tumor phenotype (27–29). In the setting of anti-
angiogenic therapy, glioblastoma cells co-opt normal blood
vessels (30) asa routeof invasion into the surroundingbrain.
Although initial reports implied that anti-VEGF therapies
were associated with nonenhancing radiographic tumor
progression (31) originally interpreted as an increase in
tumor invasion, subsequent reports did not support this
observation (19, 20, 32, 33).

Clinical Trials
Clinical trials evaluating antiangiogenic agents for glio-

blastoma initially lagged behind other cancer indications
due to concern about potentially serious adverse events in
brain tumor patients, notably intracranial hemorrhage or
stroke. However, early clinical experience confirmed the
rarity of such events and that the toxicity profile of anti-
angiogenic agents for glioblastoma was not significantly
different from that in other cancer indications; thereafter,
clinical study of antiangiogenic agents for glioblastoma
accelerated. Amultitude of antiangiogenic agents have been
evaluated for glioblastoma, including tyrosine kinase inhi-
bitors (17, 34–48), monoclonal antibodies against VEGFR,
and a soluble decoy receptor (ref. 49; Table 1). Because
clinical development ismost advanced for bevacizumab,we
focus herein on the design, results, and conclusions of the
major bevacizumab trials for glioblastoma.

Bevacizumab for recurrent glioblastoma
Dramatic overall radiographic response (ORR) rates and

reassuring safety data led to two phase II studies that
subsequently became the basis of the FDA accelerated
approval of bevacizumab as monotherapy for recurrent
glioblastoma in 2009 (Table 2; ref. 50). Of note, both
studies compared outcome with historical benchmarks and
included independent radiologic review. The BRAIN study
randomized patients to bevacizumab (n ¼ 85) or bevaci-

zumab plus irinotecan (n ¼ 82) but was not designed to
detect differences between the two treatment arms (3).
Outcomes for the bevacizumab and bevacizumab plus
irinotecan arms included ORR rates of 28.2% and 37.8%,
6-month progression-free survival rates (PFS-6) of 42.6%
and 50.3%, andmedian overall survival (OS) of 9.2months
and 8.7 months, respectively. A single-arm study of bev-
acizumab among 48 patients treated at the NCI noted ORR
andPFS-6 rates of 35%and 29%, respectively, and amedian
OS of 7.75 months (2). Although the BRAIN and NCI trials
generated unprecedented ORR and PFS-6 rates, the Euro-
pean Medicines Agency declined to approve bevacizumab
for recurrent glioblastoma due to the absence of a non-
bevacizumab control arm, a modest OS increment versus
historic controls, inadequate elucidation of true antitumor
effect, and challenges with radiographic response assess-
ment (51).

Thereafter, attempts to augment the benefit of single-agent
bevacizumab included studies evaluating bevacizumab
combined with chemotherapeutics (31, 52–61), targeted
therapies (62–64), and reirradiation (65–67). Unfortunate-
ly, all of these combinatorial regimens failed to improve
outcome beyond that of bevacizumab monotherapy, pos-
sibly due to a decrease of drug delivery to the tumor (8). A
single exception is a phase II study in which 148 patients
with recurrent glioblastoma were randomly assigned to
lomustine, bevacizumab, or lomustine plus bevacizumab
(Table 2; ref. 68). Theoutcomewasnotably improved for the
combination arm including PFS-6 of 41%, compared with
11%and18% for lomustine andbevacizumabalone, respec-
tively. The combination arm also showed improved OS at 9
months (OS9), the primary endpoint of this trial. The OS9
rates were 59% for the combination arm and 43% and 38%
for lomustine and bevacizumab alone, respectively. Two
aspects of this study warrant special comment. First, this is
the only study to date that incorporates a comparative,
randomized statistical design with a non-bevacizumab con-
trol armwith minimal crossover to bevacizumab. Second, it
is the first study to report a bevacizumab combination with

Table 1. Representative clinical trials of VEGF/VEGFR targeting therapeutics among recurrent
glioblastoma patients

Agent Mechanism Dose
Patients
(n)

ORR
(%)

PFS-6
(%)

OS (median,
months) Reference

Aflibercept Soluble decoy VEGFR 4 mg/kg biweekly 42 18 7.7 9.8 (49)
Cediranib VEGFR TKI 30 mg daily 118 15.3 16 8.0 (97)
Nintedanib VEGFR TKI 200 mg twice a day 13 0 4 8.1 (48)
Pazopanib VEGFR TKI 800 mg daily 35 5.7 3 8.8 (34)
Pazopanib (þ lapatinib) VEGFR TKI 400 mg daily 41 5 7.5 NR (47)
Sorafenib (þ daily TMZ) VEGFR TKI 400 mg daily 32 3 9.4 10.4 (35)
Sunitinib VEGFR TKI 37.5 mg daily 32 10 10.4 9.4 (42)
Vandetanib VEGFR TKI 300 mg daily 32 12.5 6.5 6.3 (41)
Bevacizumab Humanized anti-VEGF mAb 10 mg/kg biweekly 85 28 43 9.3 (3)

Abbreviations: TKI, tyrosine kinase inhibitor; TMZ, temozolomide.
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improvedoutcome comparedwithbevacizumabmonother-
apy. Yet, the bevacizumab-alone arm underperformed in
this trial, and the differences between PFS andOS in all arms
suggest that further interventions had a great impact on
outcome in this trial. An ongoing phase III study to further
evaluate these findings (EORTC 26101, NCT01290939)
randomizes recurrent glioblastoma patients to lomustine or
lomustineplus bevacizumabwith a primary endpoint ofOS.
Resistance to bevacizumab inevitably develops, and such

patients typically die rapidly due to ineffective therapies
(2, 31, 53, 69–72). Retrospective data suggest that bevaci-
zumab continuation beyond initial progression may mod-
estly improve outcome (73). Prospective evaluation of this
approach is forthcoming via an ongoing trial (TAMIGA).
Nonetheless, effective therapies for bevacizumab-refractory
glioblastomas are desperately needed.

Bevacizumab for newly diagnosed glioblastoma
Initial single-arm, phase II studies of bevacizumab in

combination with temozolomide and radiation for newly
diagnosed glioblastoma patients noted a near doubling
of median PFS to 13 to 14 months compared with
historic benchmarks and a nominal median OS incre-
ment to 20 months (74–76). Two randomized, placebo-
controlled phase III studies, RTOG 0825 and AVAglio,
reported extension of PFS but no difference in OS (77, 78;
Table 2). Specifically, the median PFS rate was 47% to
71% longer for bevacizumab recipients compared with
controls, but OS was not significantly different in the two
treatment arms. Because 30% to 40% of controls on each
study received bevacizumab at progression, crossover is a
potential confounder in terms of the impact on OS,
although this remains a matter of speculation. Impor-
tantly, both studies assessed predefined clinical and
molecular prognostic factors for association with out-
come but failed to identify any of these patient subgroups
more or less likely to benefit from bevacizumab; howev-
er, there is ongoing investigation in both trials to deter-

mine whether more complex genetic signatures may
define subgroups more likely to benefit from bevacizu-
mab in combination with chemoradiation, as discussed
below and elsewhere.

Both RTOG 0825 and AVAglio assessed other measures of
clinical benefit. The investigators from the AVAglio trial
noted preserved Karnofsky performance status and lower
corticosteroid requirement among bevacizumab recipients.
Unexpectedly, results from validated measures of quality of
life (QOL), including the EORTC QLQ-C30 and BN20
questionnaires that were incorporated by both studies, were
conflicting. Among bevacizumab recipients, consistently
improvedQOL scoreswere reported across five prospectively
defined domains on AVAglio, whereas lower scores were
noted for several domains on RTOG 0825. Moreover, in
RTOG 0825, symptom burden was increased in the bevaci-
zumab arm versus the control arm using theMDASI-BT. The
explanation for these discordant results remains unclear.
Investigators in RTOG 0825 assessed radiographic response
solely by enhancing tumor (Macdonald criteria; ref. 79) and
may have failed to identify early progression among bevaci-
zumab recipients. In contrast, AVAglio assessedbothenhanc-
ing andnonenhancing tumor (RANOcriteria; ref. 80). RTOG
0825, but not AVAglio, incorporated formal neurocognitive
testing, and these investigators noted diminished processing
speed and executive function among bevacizumab recipients
compared with controls. These notable findings warrant
follow-up investigation. In summary, clinical trial data to
date support improved PFS but lack of significant OS benefit
with bevacizumab among recurrent and newly diagnosed
glioblastoma patients.

Biologic and Imaging Markers
The increased understanding of the molecular profile of

glioblastoma suggests that subgroups of these patients may
respond differentially to distinct classes of antiangiogenic
agents. There are a number of tumor tissue and circulating

Table 2. Landmark clinical trials of bevacizumab for glioblastoma

Trial Regimen Patients (n) Median PFS (mo) PFS-6 (%) Median OS (mo) Reference

Recurrent glioblastoma
Brain BEV 85 4.2 42.6 9.2 (3)
Brain BEV þ irinotecan 82 5.6 50.3 8.7 (3)
NCI BEV 48 4.0 29 7.8 (2)
BELOB BEV 50 3 18 8 (68)
BELOB Lomustine 46 2 11 8 (68)
BELOB BEV þ lomustine 44 11 41 11 (68)

Newly diagnosed glioblastoma
RTOG 0825 BEV þ TMZ/XRT 312 10.7 (HR, 0.79; P ¼ 0.007) NR 15.7 (78)
RTOG 0825 TMZ/XRT 309 7.3 NR 16.1 (78)
AVAGlio BEV þ TMZ/XRT 458 10.6 (HR, 0.64; P < 0.0001) NR 16.9 (77)
AVAGlio TMZ/XRT 463 6.2 NR 16.8 (77)

Abbreviations: BEV, bevacizumab; NR, not reported; TMZ, temozolomide; XRT, radiation therapy.
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candidate biomarkers for predicting the efficacy of antian-
giogenic agents. Tumor tissue biomarkers that have been
assessed, but not confirmed (78, 81) include a nine-gene
signature representative of the mesenchymal subtype of
glioblastoma (82, 83), VEGF expression (84, 85), O6-
methylguanine methyltransferase promoter methylation sta-
tus (78), epidermal growth factor receptor (EGFR), platelet-
derived growth factor receptor a (PDGFR-a), and c-KIT for
VEGFR2 inhibition (6, 86). Negative predictive markers for
the use of bevacizumab in newly diagnosed glioblastoma
include an expanded set ofmesenchymal genes (81),where-
as the proneural molecular (tumors with IDH mutations
excluded) subtype of glioblastoma specifically benefitted
from bevacizumab (85) versus the other three Cancer
Genome Atlas glioblastoma molecular subtypes. Indepen-
dent cross-trial confirmation of these putative predictive
markers is needed, and their use in current clinical practice
should be discouraged.

Circulating cytokines are attractive candidate biomarkers.
However, in the AVAglio trial, pretreatment plasma VEGF
and sVEGFR2 levels were not associated with PFS or OS
(20, 85, 87).Matrixmetalloproteinase (MMP)-2 is a plasma
candidate biomarker for efficacy of bevacizumab (88).
Elevated soluble VEGFR1, a negative regulator of the VEGF
signaling cascade, has been proposed as a resistance bio-
marker in other solid tumor types (89).

Radiographic response as definedby a reduction in tumor
contrast-enhancement on brain CT or MRI scans may not
reflect intrinsic antitumor activity since antiangiogenic
treatment notably targeting VEGF signaling may rapidly
reduce vessel permeability and contrast extravasation. This
rapid and usually transient radiographic change is some-
times termed "pseudoresponse." Consequently, antiangio-
genic treatments have compelled a focus on brain tumor
imaging leading to the introduction of novel, candidate
techniques to accurately define tumor response and tumor
progression. Some of these MRI methods include apparent
diffusion coefficient (ADC; ref. 90), dynamic contrast-
enhanced (DCE) and dynamic susceptibility-contrast
(DSC) techniques to assess baseline and dynamic features
of glioblastoma vasculature (91, 92), as well as vessel
architectural imaging (VAI), which exploits a temporal shift
in the magnetic resonance signal, forming the basis for
vessel caliber estimation (93). VAI techniques demon-
strate vessel-normalizing microcirculation during VEGF
inhibition with cediranib, a pan-VEGF receptor tyrosine
kinase inhibitor (93). The T1-derived parameter KTrans

may reflect not only vessel normalization but also efficacy
with VEGF inhibition. Cerebral blood flow may increase
early after initiation of anti-VEGF therapy and identify
responders, and it is associated with improved tumor
oxygenation status (86). Dopamine and amino acid pos-
itron emission tomography has been evaluated as an early
imaging parameter of response to anti-VEGF therapy (94,
95). Further assessment of these imaging techniques and
implementation of uniform imaging protocols in pro-
spective randomized trials is essential to determine their
ultimate predictive value.

Future Directions
Significant effort and investment have been dedicated to

the development of antiangiogenic therapies for glioblas-
toma. Consequently, new criteria for the assessment of
disease by neuroimaging have been defined (80), new
concepts of clinical trial design have been developed
(96), and the quality of clinical trial design, conduct, and
analysis has been improved (20, 78, 97). Nevertheless, an
overall survival benefit has yet to be identified after five
randomized phase III trials in the newly diagnosed and
recurrent glioblastoma setting. Where do we go from here?

First, future pivotal phase III trials of antiangiogenic
agents should be conducted on the basis of data from
well-designed, placebo-controlled, randomized phase II
trials when feasible (96). Second, it is highly likely that a
future survival advantage is likely to come from the com-
binationof antiangiogenic and cytotoxic treatments, similar
to other solid tumor types. As noted, the only positive OS
data from a randomized (phase II) trial were for recurrent
glioblastoma with chemotherapy plus bevacizumab. Third,
although striking differences in patient response to and
duration of benefit from VEGF inhibitors among patients
with glioblastoma have been observed, none of the prom-
ising neuroimaging, histologic, and circulating markers
associated with radiographic or clinical benefit have yet
been validated. This, until now, missed opportunity for
drug development is equally unfortunate for the field of
neuro-oncology and for the pharmaceutical industry and
even more for patients who may derive benefit from this
treatment approach. Thus, intensive effort should focus
on the identification and validation of such predictive
markers. Fourth, with improved cellular and rodent gli-
oma models, including patient-derived and stem-like cell
models and feasible animal imaging techniques available,
more preclinical studies focusing on predictive biomar-
kers and mechanisms of escape are feasible and should
supplement the ongoing efforts of moving antiangiogenic
agents forward.
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