Equation of State in 1/n Expansion

— n-Vector Model in the Presence of Magnetic Field —

Ryuzo Abe and Shinobu Hikami*

Department of Pure and Applied Sciences, University of Tokyo, Komaba, Tokyo 153

*Research Institute for Fundamental Physics, Kyoto University, Kyoto 606

(Received October 4, 1976)

The classical n-vector model in the presence of magnetic field is studied by 1/n expansion. A detailed discussion is given of the equation of state up to order 1/n. As an application, the critical temperature and a universal amplitude ratio are investigated.

§ 1. Introduction

Recently, critical phenomena described by the ϕ^4 Wilson Hamiltonian have been considered by ε expansion ($\varepsilon = 4 - d$, d is space dimension) and by 1/n expansion (n is the number of components of the ϕ-field). These two different theories give rise to consistent results for critical exponents in the overlapping region ($\varepsilon \ll 1, n \gg 1$).

Concerning critical phenomena, a universal property is known that symmetry and space dimension determine the critical behavior. The n-vector model, which has been introduced by Stanley, is a model of spin system with n components. It is a generalized version of Ising ($n = 1$), XY ($n = 2$) and Heisenberg ($n = 3$) models. This n-vector model has been investigated in 1/n expansion. Indeed these treatments lead to the same results as obtained by the ϕ^4 theory.

However, the n-vector model has a distinct property of the constraint for the spin field σ; the norm of σ is fixed to a certain value. Among field theories, nonlinear σ-model is known to have the same property. The linear σ-model, which has no constraint, corresponds to the ϕ^4 theory. Quite recently, the nonlinear σ-model has been investigated by several authors for $d = 2 + \varepsilon$ dimension.

In this paper, we present a refined treatment of n-vector model by clarifying the renormalization procedure and give the expression for equation of state up to order 1/n. Recently, universal ratio of critical amplitudes has been discussed by ε expansion. We also consider the same problem in 1/n expansion.

§ 2. n-vector model in a uniform magnetic field

We consider the n-vector model on the d-dimensional hypercubic lattice. Magnetic field h is assumed to interact with all components of spin. The partition
function is given as

$$Z_h = \int \exp \left[\frac{1}{2} \sum_{t, j} \sum_{m = 1}^{N} K_{ij} \sigma_i(m) \sigma_j(m) + h \sum_{j, m} \sigma_j(m) \right] \prod [\delta[n - \sum \sigma_j^2(m)] \prod \delta_k(m).$$

(2.1)

Introducing t_j-fields ($j = 1, \cdots, N$), which are auxiliary fields and play the role of composite fields, we derive the following expression:

$$Z_h = \frac{1}{(2\pi t)^N} \int_{a-t}^{a+t} \prod dt_j \exp \left(n \sum t_j + \ln f(h; t_1, t_2, \cdots, t_N) \right),$$

(2.2)

where

$$f(h; t_1, \cdots, t_N) = \int \exp \left\{ \frac{1}{2} \sum_{t, j} K_{ij} \sigma_i \sigma_j + h \sum_{j, t} \sigma_j - \sum_{j, t} \sigma_j^2 \right\} \prod \delta_k.$$

(2.3)

By applying the same procedure as in Refs. 3) - 5), the saddle point equation is given by

$$1 - \langle \sigma_j^2 \rangle_h = 0$$

(2.4)

with

$$\langle \cdots \rangle_h = \int \cdots \exp \left\{ \frac{1}{2} \sum_{t, j} K_{ij} \sigma_i \sigma_j - t \sum \sigma_j^2 + h \sum \sigma_j \right\} \prod \delta_k / f_0(h, t),$$

(2.5)

$$f_0(h, t) = \int \exp \left\{ \frac{1}{2} \sum_{t, j} K_{ij} \sigma_i \sigma_j - t \sum \sigma_j^2 + h \sum \sigma_j \right\} \prod \delta_k.$$

(2.6)

The logarithm of $f_0(h, t)$ in (2.6) is easily calculated to be

$$\ln f_0(h, t) = \frac{N}{2} \ln \pi + \frac{Nh^2}{4[t - K(0)/2]} - \frac{1}{2} \sum_{q} \ln \left[\frac{t - K(q)}{2} \right].$$

(2.7)

From (2.5) and (2.7), the saddle point equation becomes

$$\frac{1}{2N} \sum \frac{1}{t - K(q)/2} + \frac{h^2}{4[t - K(0)/2]} = 1.$$

(2.8)

This result has been already obtained previously. 5) - 6) In deriving the term of order $1/n$, however, as remarked recently by Pesch and Selke, 19 a previous treatment 5) contains some misleading procedure even though a final result is correct. In the following, we present correct expressions for partition function in the presence of magnetic field.

To consider the $1/n$ expansion, we put

$$t_j = t + ix_j$$

(2.9)

and

$$f(h; t_1, \cdots, t_N)/f_0(h, t) = \langle e^{-ix_j \sigma_j^2} \rangle_h = G.$$

(2.10)

The partition function of (2.2) is written as
\[Z_n = \exp \left\{ n \left[Nt + \ln f_n(h, t) \right] \right\} \frac{1}{(2\pi)^n} \int_{-\infty}^{\infty} d\mathbf{x} \exp \left\{ n \left[i \sum x_j + \ln G \right] \right\}. \] (2.11)

In the presence of magnetic field \(h \), the linear terms of \(\sigma_j \) appear in the calculation. To eliminate these linear terms, we transform
\[\sigma_j \rightarrow \sigma_j + ha_j. \] (2.12)
Putting this into the exponent of (2.3) and taking the coefficient of \(\sigma_j \) zero, we get
\[2a_j t_j - \sum_k K_{jk} a_k = 1. \] (2.13)
Thus, (2.3) becomes
\[f(h; t_1, \ldots, t_N) = \exp \left(\frac{h^2}{2} \sum_j a_j \right) \int \exp \left[\frac{1}{2} \sum_{j,k} K_{jk} \sigma_j \sigma_k - \sum_j t_j \sigma_j^2 \right] d\sigma_k. \] (2.14)
Also, by denoting \(a_j \) in the case \(x_1 = x_2 = \ldots = x_N = 0 \) by \(a_j(0) \), \(f_o(h, t) \) is expressed as
\[f_o(h, t) = \exp \left(\frac{h^2}{2} \sum_j a_j(0) \right) \int \exp \left[\frac{1}{2} \sum_{j,k} K_{jk} \sigma_j \sigma_k - t \sum_j \sigma_j^2 \right] d\sigma_k. \] (2.15)
From (2.9), (2.13) is rewritten as
\[\sum_k A_{jk} a_k = 1 - 2i x_j a_j \] (2.16)
with
\[A_{jk} = 2t \delta_{jk} - K_{jk}. \] (2.17)
We denote \(g(k, l) \) as
\[g(k, l) = (A^{-1})_{kl} = \frac{1}{N} \sum_q e^{i q \cdot (r_j - r_i)} \] (2.18)
From (2.16) and (2.18), it follows that
\[a_j = \sum_l g(j, l) - 2i \sum_l g(j, l) x_i a_i. \] (2.19)
Therefore, by iteration we have
\[\sum_{j_1} a_{j_1} - \sum_{j_1} a_{j_1}(0) = -2i \sum_{j_1, j_2, j_3} g(j_1, j_2) x_{j_3} g(j_2, j_3) \]
\[+ (-2i)^2 \sum_{j_1, j_2, j_3, j_4} g(j_1, j_2) g(j_2, j_3) g(j_3, j_4) x_{j_4} x_{j_5} \]
\[+ \ldots, \] (2.20)
where
Here, the second equality defines a variable s. Putting (2.20) in the expression for G, (2.10), we have

$$G = \exp \left\{ \frac{\hbar^2}{2K^2 s^2} \left[-2i \sum_{j}^{\beta} x_j + (-2i)^\alpha \sum_{j \neq i}^{\beta} g(j_i, j_k) x_j x_j, \right. \right.$$

$$+ \left. \left. (-2i)^\beta \sum_{j}^{\beta} g(j_i, j_l) x_j x_j x_l + \cdots \right]\right\} G_{s}, \quad (2.22)$$

where we denote G without magnetic field by G_{s}. By the use of the result obtained previously,\cite{2, 21} from (2.22) the partition function is written as

$$Z_h = \exp \left\{ n \left[Nt + \ln f_{h}(h, t) \right] \right\} - \frac{Z_h'}{(2\pi)^{n/2}} \quad (2.23)$$

with

$$Z_h' = \sum_{\alpha} \prod \int dy_j \exp \left[\sum_{m=2}^{\infty} \frac{(-i)^{m-1}}{m^2} \sum_{j}^{\beta} y_{j, \ldots, j} g(j_i, j_k) \right.$$

$$\left. \cdots g(j_m, j_i) + \frac{\hbar^2}{K^2 s^2} \sum_{m=2}^{\infty} \frac{(-i)^{m-1}}{n^{m/2}} \sum_{j_m=j_i} y_{j, \ldots, j} \right]. \quad (2.24)$$

§ 3. Calculation up to order $1/n$

In a previous section, we have obtained the general expression for the partition function. Up to order $1/n$, we have from (2.24),

$$Z_{h'} = \sum_{\alpha} \int dy_j \exp \left[-\frac{2\hbar^2}{K^2 s^2} \sum_{j} y_{j, y_{k}} g(j, k) \right. - \sum_{j} y_{j, y_{k}} g^2(j, k) \right]. \quad (3.1)$$

Denoting $\nu_{h}(q)$ by

$$g^2(j, k) + \frac{2\hbar^2}{K^2 s^2} g(j, k) = N^{-1} \sum_{q} \nu_{h}(q) e^{i q \cdot (rj-rk)}, \quad (3.2)$$

we have

$$\ln Z_{h'} = \frac{N}{2} \ln \pi - \frac{1}{2} \sum_{q} \ln \nu_{h}(q). \quad (3.3)$$

From (2.23), the logarithm of the partition function is given as

$$\frac{1}{nN} \ln Z_h = t + \frac{1}{N} \ln f_{h}(h, t) - \ln \frac{2\pi}{n} + \frac{n}{2n} + \frac{1}{nN} \ln Z_{h'}. \quad (3.4)$$

Using the previous notation $\nu(q)$ in Refs. 3)~6), $\nu_{h}(q)$ is written as
Equation of State in 1/n Expansion

\[\nu_h(q) = \nu(q) + \frac{2h^2}{K^2 s^3} g(q). \]

(3.5)

The magnetization up to order 1/n is given as

\[\langle \sigma \rangle = M = \frac{\hbar}{K_s} - \frac{1}{2nN} \frac{\partial}{\partial h} \sum_{q} \ln \nu_h(q). \]

(3.6)

We notice that the quantity \(s \) depends upon \(h \), through the following saddle point equation:

\[\frac{1}{2N} \sum_{q} \frac{1}{t - K(q)/2} + \frac{h^2}{K^2 s^3} = 1. \]

(3.7)

Noting that the following equations hold,

\[\frac{ds}{dt} = \frac{2}{K}, \]

(3.8)

\[\frac{\partial s}{\partial h} = \frac{2h}{K^2 s^3} \left[\frac{2h^2}{K^2 s^3} + \frac{1}{N} \sum_{q} g^2(q) \right], \]

(3.9)

\[\frac{\partial \nu(q)}{\partial h} = \frac{\partial}{\partial h} \left\{ \frac{1}{N} \sum_{q} g(k) g(q-k) \right\} \]

\[= -2Kq(q) \frac{\partial s}{\partial h}, \]

(3.10)

we have

\[\frac{\partial \nu_h(q)}{\partial h} = 2K \frac{\partial s}{\partial h} \left[J(q) - \frac{h^2}{K^2 s^3} g^2(q) \right] \]

(3.11)

with

\[J(q) = g(q) \frac{1}{N} \sum_{k} g^2(k) - \frac{1}{N} \sum_{k} g^2(k) g(k-q). \]

From (3.6) and (3.11), the expression for magnetization in the presence of magnetic field is obtained as

\[M = \frac{h}{K_s} - \frac{K}{nN} \frac{\partial s}{\partial h} \sum_{q} J(q) - \frac{h^2}{K^2 s^3} g^2(q) + O\left(\frac{1}{n^2}\right). \]

(3.12)

This expression agrees with the previous result.\(^5\)

§ 4. Equation of state

We introduce a quantity \(r \) defined by

\[M = \frac{h}{Kr}. \]

(4.1)
From (3.12), it is seen that s is related to r as
\[
\frac{1}{r} = \frac{1}{s} - K^2 \frac{2}{nN} \frac{h^2}{K^2 s^2} \frac{1}{K^2 s^3} + \frac{1}{N} \sum \limits_{q} g^2(q) \left[\sum \limits_{q} \frac{J(q) - (h^2/K^2 s^2)g^2(q)}{\nu(q) + (2h^2/k^2 s^2)g(q)} + O\left(\frac{1}{n^2} \right) \right].
\]

Expressing s by r, we have
\[
s = r + \frac{2}{nNK} \left\{ \sum \limits_{q} \frac{1}{r + q^2} \frac{M^2}{K^2} \left[\frac{1}{K^2 r^3} \sum \limits_{q} \frac{J(q) + M^2 g^2(q)}{\nu(q) + 2M^2 g(q)} + O\left(\frac{1}{n^2} \right) \right] \right\}.
\]

The saddle point equation (3.7) becomes
\[
K = \frac{1}{N} \sum \limits_{q} \frac{1}{r + q^2} + KM - \frac{2}{nN} \sum \limits_{q} \frac{J(q) + M^2 g^2(q)}{\nu(q) + 2M^2 g(q)} \bigg|_{s=r} + O\left(\frac{1}{n^2} \right).
\]

We take for convenience the following notations:
\[
J(q, r) \to \frac{1}{K^2} J(q, r), \quad \nu(q, r) \to \frac{1}{K^2} \nu(q, r),
\]
\[
\sqrt{KM} = \dot{M}.
\]

Then we have from (4.4)
\[
K = \frac{1}{N} \sum \limits_{q} \frac{1}{r + q^2} + M^2 - \frac{2}{nN} \sum \limits_{q} \frac{J(q, r) + M^2 (r + q^2)}{\nu(q, r) + 2M^2 (r + q^2)}.
\]

Equation (4.6) is simply represented by diagrams [Fig. 1]:
\[
K = \Sigma_{A}(r) + \Sigma_{A}^{'}(a) + \Sigma_{B}(r, a) + \Sigma_{B}^{'}(r, a).
\]

The solid line represents $(r + q^2)^{-1}$ and the cross represents the magnetic field h.
\[
\Sigma_{A} = \frac{1}{N} \sum \limits_{k} g(k),
\]
\[
\Sigma_{A}^{'} = \frac{h^2}{r^2} = \frac{a}{2},
\]
\[
\Sigma_{B} = -\frac{1}{N} \sum \limits_{q} g^2(q) \left[\Sigma_{C}(q) - \Sigma_{C}(0) \right],
\]
\[
\Sigma_{B}^{'} = -\frac{1}{N} \sum \limits_{q} g^2(q) \left[\Sigma_{C}^{'}(q) - \Sigma_{C}^{'}(0) \right],
\]
\[
\Sigma_{C}(q) = \frac{2}{Nn} \sum \limits_{v} \frac{g(q - k)}{\nu_{k}(k)}.
\]
Equation of State in $1/n$ Expansion

\[\Sigma_{e'}(q) = \frac{2}{n
\nu_k(q)} \frac{\hbar^2}{r^2} = \frac{a}{n
\nu_k(q)}, \quad (4\cdot13) \]

with

\[\nu_k(q) = \nu(q, r) + \frac{2a}{r + q^2}. \quad (4\cdot14) \]

The critical point is defined as the singular point where the susceptibility diverges, i.e., $r = 0$. We have from (4·6) the expression for critical temperature by putting $r = 0$ and $M = 0$:

\[K_c = \frac{1}{N} \sum_q \frac{1}{q^2} + \frac{2}{nN} \sum_q J(q, 0) + O\left(\frac{1}{n^2}\right). \quad (4\cdot15) \]

This expression has been discussed previously.\(^{0,20,21}\) Subtracting (4·15) from (4·6), we obtain by putting $K_c = K = t$

\[t = \frac{1}{N} \sum_q \left(\frac{1}{q^2} - \frac{1}{r + q^2} \right) - M^2 + \frac{2}{nN} \sum_q \nu(q, 0) - \frac{2}{nN} \sum_q P(q, r, M), \quad (4\cdot16) \]

where we have used new notations Q and P:

\[Q(q, r) = \frac{J(q, r)}{\nu(q, r)}, \quad (4\cdot17) \]

\[P(q, r, M) = \frac{J(q, r) - M^2 q^2(q, r)}{\nu(q, r) + 2M^2 q^2(q, r)}. \quad (4\cdot18) \]

Note that $P(q, r, 0) = Q(q, r)$.

We consider (4·16) in three cases i) $T > T_c$, ii) $T = T_c$, iii) $T < T_c$. In the region $T > T_c$, putting $M = 0$ we obtain

\[t = \frac{1}{N} \sum_q \left(\frac{1}{q^2} - \frac{1}{r + q^2} \right) + \frac{2}{nN} \sum_q Q(q, 0) - \frac{2}{nN} \sum_q P(q, r, 0) \]

\[= (Fr)^{1/r}, \quad (4\cdot19) \]

where F is the critical amplitude of susceptibility, and r is the critical exponent. At the critical point $T = T_c$, putting $t = 0$ we have

\[0 = (Fr)^{1/r} + \frac{2}{nN} \sum_q Q(q, r) - \frac{2}{nN} \sum_q P(q, r, M) - M^2. \quad (4\cdot20) \]

In deriving this equation, we have used (4·19). From (4·20), we get

\[(Fr)^{1/r} = M^2 + \frac{2}{nN} \sum_q P(q, r, M) - \frac{2}{nN} \sum_q Q(q, r), \quad (4\cdot21) \]

and noting the definition $r = H/M$, we obtain at $T = T_c$
\[
\frac{H}{M} = \frac{1}{T} \left[M^2 + \frac{2}{nN} \sum P(q, r, M) - \frac{2}{nN} \sum Q(q, r) \right] \left(\frac{H}{M^3} \right)^{1/3}.
\]

Below the critical point \(T<T_c \), we put \(r=0 \). Equation (4.16) becomes

\[
-t = M^2 - \frac{2}{nN} \sum Q(q, 0) + \frac{2}{nN} \sum P(q, 0, M)
= (M/B)^{1/3}.
\]

Equation (4.22)

The quantities \(D \) and \(B \) in (4.22) and (4.23) are critical amplitudes.

Thus, we have obtained the expression for critical amplitudes \(\Gamma', D \) and \(B \). Combination of these amplitudes gives a universal quantity \(R_x \). The \(R_x \) is defined as

\[
R_x = \Gamma' DB^{1/3} = \Gamma DB^{1/3}.
\]

Using the results (4.21) ∼ (4.23), \(R_x \) up to order \(1/n \) is expressed as

\[
R_x = \left[1 + \frac{2}{n N M^2} \sum \left[\Psi(q, r, M) - \Psi(q, 0, M) \right] \right]^{1/3},
\]

where

\[
\Psi(q, r, M) = P(q, r, M) - Q(q, r).
\]

In (4.25), \(r \) is determined from the condition

\[
\frac{1}{N} \sum \left(\frac{1}{q^2} - \frac{1}{r + q^2} \right) = M^2.
\]

The equation of state is known to be written in the scaled form:

\[
H = DM^3 f \left(\frac{t}{\sqrt[3]{M/B}} \right).
\]

The quantity \(M^{1/3} \) is obtained from (4.23). From (4.16), we find

\[
t = (\Gamma r)^{1/3} - M^2 + \frac{2}{nN} \sum Q(q, r) - \frac{2}{nN} \sum P(q, r, M).
\]

Deviding this equation by \((M/B)^{1/3}\), we obtain

\[
x = \frac{t}{(M/B)^{1/3}} = \frac{(\Gamma r)^{1/3}}{(M/B)^{1/3}} \frac{M^2 + (2/nN) \sum \Psi(k, r, M)}{M^2 + (2/nN) \sum \Psi(k, 0, M)}.
\]

Noting that

\[
\frac{(\Gamma r)^{1/3}}{(M/B)^{1/3}} = \left[\frac{\Gamma r}{(M/B)^{1/3}} \right]^{1/3} = \left(\frac{\Gamma B^{1/3} H}{M^3} \right)^{1/3},
\]

we obtain

\[
\left(\frac{\Gamma B^{1/3} H}{M^3} \right)^{1/3} = 1 + x + \frac{2}{n M^2 N} \sum \Psi(k, r, M) - \Psi(k, 0, M).
\]
Therefore, the scaling function is written as

\[
Df(x) = \left[1 + x + \frac{1}{n} g(x) \right]^r \quad (4.32)
\]

with

\[
g(x) = \frac{2}{nM^3N} \sum \{ \Psi(k, r, M) - \Psi(k, 0, M) \}. \quad (4.33)
\]

At the critical point \(T = T_c \), we have

\[
\frac{H}{M^8} = D. \quad (4.34)
\]

Consequently, the following equation holds:

\[
D = \frac{1}{\Gamma B^{r-1}} \left(1 + \frac{1}{n} g(0) \right)^r. \quad (4.35)
\]

The universal ratio \(R_x \) is then written as

\[
R_x = D \Gamma B^{r-1} = \left(1 + \frac{1}{n} g(0) \right)^r. \quad (4.36)
\]

From (4.32) and (4.36), we have

\[
f(x) = \left[1 + x + \frac{1}{n} g(x) \right]^r / \left[1 + \frac{1}{n} g(0) \right]^r = \left[1 + x + \frac{1}{n} g(x) - x + \frac{1}{n} g(0) \right]^r. \quad (4.37)
\]

We have derived the expression for the scaling function (4.37). However, (4.33) does not explicitly represent \(x \) dependence. To see the situation, we represent \(\Psi(k, r, M) \) as

\[
\frac{2}{n} \Psi(k, r, M) = \frac{1}{n} \sum \frac{J(k, r)}{r + k^2 + 2M^2/\nu(k, r)} + \frac{1}{n} \sum \frac{1}{r + k^2} \quad (4.38)
\]

The derivation of this equation is given in the Appendix. In the large \(n \)-limit, we have exactly the equation of state for spherical model

\[
H = M^8 \Delta_0 (1 + x)^r_0 \quad (4.39)
\]

with

\[
\Delta_0^{-1/r_0} = \Delta_0 = \frac{\Gamma [2 - (d/2)]}{2^{d-2} \pi^{d/2} [(d/2) - 1]}. \quad (4.40)
\]

Therefore, we have
Performing the change of variable $k^2 \rightarrow r k^2$, we obtain

$$J(k, r) = r^{(d-2)/2} J(k, 1)$$

and

$$\nu(k, r) = r^{(d-1)/d} \nu(k, 1).$$

Putting these expressions into (4.38) and by the help of (4.41), $g(x)$ is written as

$$g(x) = K_d \int \frac{-4k^2 J(k, 1) \nu^{-1}(k, 1) - (x + 1) \nu^{-1}(k, 1) - 2 k^{d-1} dk}{k^2 (1 + k^2)}$$

$$+ \frac{K_d}{c_0} (x + 1) \int k^{d-1} \frac{dk}{1 + k^2}$$

$$- K_d \int \frac{-4k^2 J(k, 0) \nu^{-1}(k, 0) - 2 x^{d-1} dk}{k^2 (k^2 \nu(k, 0) + 2c_0/(x + 1))}.$$

(4.43)

This expression agrees with the result obtained by Brézin and Wallace.\(^\text{10}\)

In the limit $x \rightarrow \infty$, $g(x)$ is finite. Therefore,

$$\lim_{x \rightarrow \infty} f(x) = \frac{1}{n^{(d+1)/d}}.$$

(4.44)

This quantity is equal to R_x^{-1}.\(^\text{10}\) This procedure is confirmed since R_x is given by (4.36). In three dimension, the $g(0)$ is calculated to be $g(0) = -0.956$. Therefore, R_x is given by

$$R_x \approx \left(1 - \frac{0.956}{n}\right)^{1/n} \approx 1 - \frac{1.912}{n}.$$

(4.45)

By ε expansion,\(^\text{10}\) R_x is estimated as 1.61 ($n=1$) and 1.33 ($n=3$). The series expansion\(^\text{10}\) gives 1.75 ($n=1$) and 1.23 ($n=3$). Up to the first order term of $1/n$ expansion, R_x is less than 1.

§ 5. Discussion

We have derived the expression for equation of state in $1/n$ expansion for the n-vector model. We have represented the quantity s by the inverse susceptibility r. This procedure can be applied to other problems, for example, to the study of energy. For the case of energy, we have the same result as obtained from ϕ^4 theory.\(^\text{12}\)

Even though the numerical value R_x up to order $1/n$ is not so good, the

\(^{10}\) There is a misprint in the expression derived by Brézin and Wallace. See the correction by Wallace and Zia [Ref. 22].
value of \(f(x) \) for small \(x \) and near \(x = -1 \) is fairly good. As pointed out by Nelson\(^{20} \), the \(\varepsilon \) expansion\(^{20} \) gives spurious behavior near \(x = -1 \) for \(f(x) \) in its original form. It is interesting to perform \(\varepsilon \) expansion for the expression of (4-37). However, this will be discussed in another paper.

Acknowledgements

One of the authors (S.H.) thanks Professor H. D. I. Abarbanel and the members of Yukawa Hall for helpful discussions.

Appendix

Derivation of (4·38)

We define \(A \) and \(B \) in the following form:

\[
A = \frac{2M^2}{r + k^2}, \quad B = \frac{M^2}{(r + k^2)^2}.
\]

The \(\mathcal{F}(k, r, M) \) of (4·26) is written as

\[
\mathcal{F}(k, r, M) = \frac{J(k, r) - M^2/(r + k^2)^2 J(k, r)}{\nu(k, r) + 2M^2/(r + k^2) \nu(k, r)}
\]

\[
= \frac{J(k, r) - B J(k, r)}{\nu(k, r) + A \nu(k, r)}
\]

\[
= \frac{A J(k, r) \nu^{-1}(k, r) - B}{1 + A \nu^{-1}(k, r)} \nu(k, r) + A
\]

\[
= \frac{2M^2 J(k, r) \nu^{-1}(k, r) + 1}{(r + k^2) \nu(k, r) + 2M^2 \nu(k, r) + 1} \frac{1}{2} \frac{1}{2} \frac{1}{r + k^2 + 2M^2 \nu(k, r)} - \frac{1}{2} \frac{1}{r + k^2}.
\]

Thus, (4·38) is derived.

References

