Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater
Guohua Hou, Fei Liu, Mingzhu Liu, Xiangke Kong, Shengpin Li, Liang Chen, Patricia J. S. Colberg, Song Jin and Honghan Chen

ABSTRACT
Nitrogen as ammonium (NH₄⁺-N) is one of the most common nitrogen contaminants in groundwater; this is particularly true in the industrial and agricultural regions of northern China, where rapid population growth and economic development have stressed public water supplies and reduced groundwater quality. In this study, we report the performance of a zeolite permeable reactive barrier (PRB) designed to remove ammonium from contaminated river water that infiltrates to a groundwater aquifer that serves as a drinking water supply for the city of Shenyang. Groundwater monitoring data obtained over 5 months of operation indicate that ammonium concentrations in the groundwater decreased from 2–10 mg/L to <0.5 mg/L after the PRB was installed in the vicinity. Data suggest that ammonium removal was mainly due to sorption and ion exchange, with NH₄⁺ exchanged with Na⁺ and K⁺ in the zeolite. After more than 1 year of continuous operation, there is no evidence of microbial ammonium oxidation. To our knowledge, this was the first field-scale demonstration of a PRB in China.

Key words | adsorption, ammonium in groundwater, groundwater in China, permeable reactive barrier, PRB, zeolite

INTRODUCTION
As groundwater supplies are overdrawn, their contamination with nitrogen compounds (ammonium, nitrite, nitrate) has become a problem in need of urgent remediation. This is particularly true in the industrial regions of northern China, where rapid population growth and economic development have stressed public water supplies and reduced groundwater quality (Ma et al. 2013).

Nitrogen as ammonium (NH₄⁺-N) is the most common nitrogen contaminant in low redox groundwater (Hinkle et al. 2007) as well as in groundwater aquifers located adjacent to surface water supplies (Zhuo et al. 2011). There are at least 30 different technologies designed to treat contaminated soils and groundwater (Evanco & Dzombak 1997; Mulligan et al. 2001; Khan et al. 2004). The permeable reactive barrier (PRB) is one of a few passive-treatment technologies that has been demonstrated to be cost-effective in remediating nitrogen contaminants in the subsurface (Patterson et al. 2004; Robertson et al. 2008; Erto et al. 2011). There are several configurations of PRBs, including those designed to optimize adsorption of contaminants to reactive media (Erto et al. 2011), to degrade contaminants microbiologically (Careghini et al. 2013), and to reduce contaminant concentrations through abiotic reduction (Chen et al. 2012). Regardless of the mechanism at work, PRBs can be designed to treat a wide variety of organic and inorganic contaminants, including ammonium (Kong et al. 2012), chlorinated solvents (Phillips et al. 2010), petroleum hydrocarbons (Chen et al. 2011) and heavy metals (Ouellet-Plamondon et al. 2011). Contaminants are removed by sorption, biodegradation, precipitation, or the combination of these reactions as the groundwater moves through the PRB (USEPA 1998; Gavaskar 1999; Thiruverikadachari et al. 2008).
In the design of PRBs that depend on adsorption reactions, various materials have been used, including zeolite (Vignola et al. 2011), granular activated carbon (GAC) (Suponik 2010), limestone (Komnitsas et al. 2004), scoria (Zhang et al. 2012), blast furnace slag (Kanew et al. 2006), and polymer mats (Patterson et al. 2004). For example, a PRB filled with GAC was utilized to remediate an aquifer adjacent to a solid waste landfill that was contaminated with tetrachloroethylene (PCE). The numerical model results showed that the barrier consistently removed more than 90% of the PCE and always met Italian regulatory requirements (Nardo et al. 2010).

Another type of PRB, the so-called ‘bio-PRB’, depends on microbial processes to transform organic pollutants or to precipitate inorganic species (USEPA 2004). Teerakun et al. (2011) employed a laboratory-scale PRB system composed of three sequential columns (a zero-valent iron [ZVI] PRB, an anaerobic bio-PRB, and an aerobic bio-PRB) to treat high concentrations of trichloroethylene (TCE; 500 mg/L) in synthetic groundwater. The entire system removed approximately 84% of the influent TCE, with 42% of the removal attributed to the ZVI.

For remediation of groundwater contaminated by mixed pollutants, a sequential PRB first suggested by Van Nooten et al. (2008) is an innovative and semi-passive in situ technology. Their combined adsorptive and bio-PRB successfully removed more than 90% of NH₄⁺-N from landfill leachate (Van Nooten et al. 2010). Kong et al. (2012) recently reported using a sequential PRB composed of an oxygen-releasing chemical and zeolite to achieve 99% removal of NH₄⁺-N in a laboratory column. Our group has recently applied a sequential PRB (ZVI + bio-PRB) and successfully treated groundwater contaminated with TCE, benzene and toluene (Chen et al. 2011).

In this paper, we report the design, installation and performance of the first in situ PRB installed in China for groundwater remediation. The system was designed to remediate ammonium nitrogen from contaminated river water that infiltrates to a groundwater aquifer that serves as a municipal drinking water supply.

MATERIALS AND METHODS

Site description

The PRB was installed about 150 m from the Hun River (see Figure 1) in a water supply source area for the city of Shenyang in northeastern China. Groundwater in this region is mainly recharged by the river (Yi et al. 2006), which is highly contaminated with ammonium that originates from...
the effluent of a nearby wastewater treatment facility and from agricultural activities in the area. The concentration of ammonia as NH₄⁺-N in the groundwater is approximately 10 mg/L or 20 times higher than the national regulatory limit of 0.5 mg/L.

The site geology where the PRB was installed is composed of floodplain and first terrace, which is part of the alluvial-pluvial fan of the Hun River. The field stratum consists of a phreatic aquifer and underlying confined aquifer (see Figure 2). The phreatic aquifer, in which contaminated groundwater flows, is mainly composed of medium sand and medium-coarse sand (hydraulic conductivity \(\sim 7 \times 10^{-4} \) m/s). The aquitard, located about 40 m under the contaminated area, is made up of clay and silty clay (hydraulic conductivity \(\sim 8 \times 10^{-11} \) m/s). The thickness of the aquitard is 4–6 m, and the groundwater table ranges from 10 to 12 m below ground surface. The concentration of ammonia-N in groundwater seasonally ranges from 1 to 8 mg/L, while the NO₃-N varies from 10 to 20 mg/L and the NO₂-N varies from 0 to 0.4 mg/L. The pH is 6–8, the dissolved oxygen (DO) averages 2–4 mg/L, and the temperature is 12–20 °C.

Barrier installation and design

The in situ PRB was composed of an adsorption-biodegradation wall filled with commercial zeolite filings obtained locally (3–5 mm diameter; Faku County, Liaoning Province, PRC). The chemical composition of the zeolite was: SiO₂ 67.09%, Al₂O₃ 12.44%, Fe₂O₃ 0.78%, Na₂O 0.26%, MgO 1.22%, CaO 8.81%, K₂O 1.20%, and others 13.32%. The adsorption capacity for ammonium was about 4.74 mg/g. The PRB was installed vertically in the ground to a depth of 40 m (see Figure 1). The zeolite reaction barrier, with a permeability (hydraulic conductivity \(\sim 7 \times 10^{-3} \) m/s) one order of magnitude greater than the aquifer permeability, was instrumented with several monitoring wells located about 1 meter apart (M1–M10 in Figure 1).

The PRB was designed to protect well P1 rather than treating whole plumes, and was U-shaped (3 m + 9 m + 3 m long) with two side wings bending towards well P1 in an effort to increase groundwater flow through the PRB. Access to the monitoring wells installed in the zeolite barrier was via manholes located at the surface. The oxygen-releasing chemical wells (400 mm i.d.) were parallel to and up-gradient from the PRB; they were constructed of polyvinyl chloride (PVC, 1.9 cm i.d.) with 30- or 45-cm long screens which were completed between 14 and 35 m below ground surface. The oxygen-releasing chemical wells were included in the design in order to add an oxygen-releasing chemical if needed to maintain aerobic conditions for microbial ammonia removal; however, the concentration of influent NH₄⁺-N was quite low during the monitoring period, and the oxygen-releasing amendments were never made during the study.

![Figure 2](https://iwaponline.com/ws/article-pdf/14/4/585/415721/585.pdf) | Hydrogeologic profile of the remediation site adjacent to the Hun River near the city of Shenyang in northeast China.
Groundwater could naturally flow through the PRB (15 m long × 1 m wide × 40 m deep zeolite wall) by gravity at a velocity of approximately 0.63 m/d, and then the water could be pumped by well P1. The depth of the PRB was chosen to be in a zone of lower hydraulic permeability, which consists of a continuous stiff clayey layer beneath a medium-coarse sand which acts as an aquitard to groundwater flow. The water table at the site is ∼12 m below ground level with an underlying aquifer at 10 m below ground level.

Appropriate design and placement of monitoring wells are critically important to ensure effective assessment of system performance. Monitoring wells (200 mm diameter, 40 m deep) were positioned upstream and downstream of the reactive barrier as well as within the zeolite wall. There were also four monitoring wells installed between the zeolite barrier and the oxygen-releasing chemical wells in order to monitor DO and evaluate the performance of the oxygen-releasing chemical if added (see Figure 1).

Groundwater sampling was conducted monthly for the following parameters: pH, Eh, DO, alkalinity, NH₄⁺-N, NO₃⁻-N, and NO₂⁻-N, total dissolved solid, and major cations and anions. In addition to the permanent monitoring wells, temporary sampling wells were utilized to increase the spatial resolution of the data.

Groundwater analysis

Groundwater samples (500 mL per well collected via peristaltic pump over ~10 min) were obtained from the monitoring wells and analyzed for NH₄⁺-N, NO₃⁻-N, and NO₂⁻-N. Ammonium concentrations were determined by a flow injection analyzer (Lachat-QC8000, Hach, Loveland, CO, USA) using a salicylate spectrophotometric method. Nitrate (NO₃⁻-N) and nitrite (NO₂⁻-N) concentrations were quantified by ion chromatography (DX-600, DIONEX Co., Sunnyvale, USA). The detection limit for each analyte was 0.1 mg/L; the standard deviation for replicate samples was ±10%. The DO, pH, Eh, temperature and specific conductance were measured in the field with portable multi-parameter meters (HQ40d, Hach, Loveland, CO, USA) with three successive readings within ±1% for DO, ±0.02 for pH, ±0.1 mV for Eh, ±0°C for temperature, and ±0.5% for specific conductance. Major metals and cations were analyzed by Inductively Coupled Plasma Emission Spectrometry (IRIS Intrepid, Thermo Elemental, Maryland, USA). Anion samples were unfiltered and unacidified; analyses were performed with an ion chromatograph (DX-600, Dionex, USA).

RESULTS AND DISCUSSION

Baseline ammonium-N concentrations

As in Figure 3, there is a positive correlation in NH₄⁺-N concentrations between the Hun River and the groundwater sampled at the up-gradient monitoring well (G8). As the concentration of ammonium-N fluctuated in the river, it also varied in the local subsurface water supply. These data clearly demonstrate the hydraulic connection between the river and groundwater at this location.

Removal of NH₄⁺-N after installation of PRB

Figure 4 graphically follows the changes in ammonium concentrations after installation of the PRB in an up-gradient well (G8), in three of the wells located within the zeolite barrier (M1, M5 and M9), and in well P1 that is located down-gradient of the PRB. Ammonium concentrations decreased to less than 0.5 mg/L in all wells down-gradient of the PRB by August 2012, and remained consistently below this level throughout the monitoring period. There were fluctuations in the ammonium concentrations at M1 and M5, M9 in July 2012 when PRB was just constructed.
and its performance was not stable yet. However, the concentrations of ammonium became stable at less than 0.5 mg/L after the initial phase. The ammonium concentrations in well P1, which was located down-gradient of the PRB, were also always less than 0.5 mg/L. This represents a overall removal efficiency of about 80%, which is even greater than the 70% achieved for ammonium removal from rainfall runoff using an above-ground limestone–zeolite PRB (Srini-vasan et al. 2008). These results clearly demonstrate that a zeolite PRB is an effective way to treat groundwater in situ that is contaminated with ammonia nitrogen.

Concentration profiles for NH$_4^+$-N, NO$_3^-$-N, NO$_2^-$-N and DO are plotted spatially in Figure 5, starting from two up-gradient monitoring wells (G8 and F3), through the zeolite barrier (M5), and then down-gradient of the PRB (P1). Although there appears to be some experimental variability in July 2012 in the initial phase of PRB, as ammonium-N concentrations in the PRB decrease, there were corresponding slight reductions in nitrate concentrations in a warm season from August to October, the values of nitrite are always at a low level, and the variability of DO (2–4 mg/L) is not obvious. Because the low levels of influent ammonium (∼3.5 mg/L) would have been readily adsorbed to the zeolite, very little ammonium would have been available for

![Figure 4](image1.png)

Figure 4 | Ammonium-N concentrations in up-gradient well G8, in wells within the PRB (M1, M5, M9), and in down-gradient well P1 monitored from July 2012 to November 2012.

![Figure 5](image2.png)

Figure 5 | Concentrations of ammonium (NH$_4^+$-N), nitrate (NO$_3^-$-N), nitrite (NO$_2^-$-N) and DO in well G8 (up-gradient of the PRB), well F3 (up-gradient of the PRB), well M5 (within the PRB) and well P1 (down-gradient of the PRB) from July 2012 to November 2012.
microbial nitrification. Microbial denitrification might exist in the PRB and was responsible for the observed nitrate reduction. However, the reaction was expected to be less significant due to DO (>2 mg/L) and elevated Eh (>400 mV), both being unfavorable for microbial nitrate or nitrite reduction (Paredes et al. 2007). Nitrate and nitrite were most likely transformed to nitrogen gas under the redox condition observed in the PRB. This is consistent with the data from historic surveys in this region, that ammonium is mainly from effluent of a municipal waste water treatment plant and local agricultural activities.

Geochemical indicator parameters

In addition to nitrogen and DO, influent and effluent samples were routinely analyzed for major metal cations (see Figure 6). The influent groundwater concentrations of Na⁺, K⁺, Ca²⁺ and Mg²⁺ were 30, 4, 38, and 12 mg/L, respectively. After passing through the zeolite PRB, the concentrations of K⁺ and Na⁺ increased, suggesting a partial release of these cations from the zeolite (see Figures 6(a) and 6(b)). The concentration of Mg²⁺ in the effluent decreased significantly to ~4 mg/L (see Figure 6(d)), while Ca²⁺ concentrations generally remained unchanged (see Figure 6(c)). The increases in Na⁺ and K⁺ concentrations and the decreases in ammonium and Mg²⁺ in the PRB suggest that the NH₄⁺-N and Mg²⁺ are primarily exchanged with Na⁺ and K⁺ present in the zeolite crystal structure. As expected, Ca²⁺ cations were neither retained nor released in the PRB system. The reactive process can be mainly carried out by the following ion-exchange reaction:

\[
\text{NH}_4^+ + \text{Zeolite} \rightarrow \text{Na}^+ / \text{K}^+ \leftrightarrow \text{Na}^+ / \text{K}^+ + \text{Zeolite} - \text{NH}_4^+ (1)
\]

\[
\text{Mg}^2+ + 2\text{Zeolite} \rightarrow \text{Na}^+ / \text{K}^+ \leftrightarrow 2\text{Na}^+ / \text{K}^+ + \text{Zeolite} - \text{Mg}^2+ (2)
\]

Huang et al. (2010) also reported that the order of the effect of metal cations on NH₄⁺ ion removal was Na⁺ > K⁺ > Ca²⁺ > Mg²⁺ at the same concentration. In this paper the low level of influent ammonium limited the ion

Figure 6 | Concentrations of Na⁺, K⁺, Ca²⁺ and Mg²⁺ in wells G8 and F3 (up-gradient of the PRB), in well M5 (within the PRB), and in well P1 (down-gradient of the PRB) from August 2012 to April 2013.
exchange reactions with other metal cations in the region except for the Na\(^+\) ions. Similar results have been reported by others (Wang et al. 2007). The driving force of the influent concentration of metal cations promoted the ion exchange reaction between them and the redistribution of metal cations in the solid–liquid phase in the PRB.

CONCLUSIONS

This paper summarizes results from an operating zeolite PRB designed and installed for the \textit{in situ} remediation of groundwater contaminated with ammonium nitrogen originating from river water infiltrating to a drinking water aquifer. Ammonium concentrations in the groundwater decreased from 2–10 mg/L to <0.5 mg/L after the PRB was installed. Results suggest that ammonium removal was mainly due to sorption and ion exchange. After more than 1 year of continuous operation, there is no evidence of microbial ammonia oxidation. To our knowledge, this is the first field-scale PRB in China. Data collected to date indicate that the PRB technology may offer a cost-effective solution to a widespread problem of surface–groundwater contamination in China; however, additional research is required to determine ways to regenerate the zeolite \textit{in situ} and/or enhance its performance by inducing microbial nitrification and denitrification in an effort to extend the longevity of this technology in the field.

ACKNOWLEDGMENTS

This study was funded by State Water Project (2009ZX07424-002). We thank the Beijing Key Laboratory of Water Resources and Environmental Engineering for technical support and all of the partners in this project for their fruitful discussions.

REFERENCES

Ouellet-Plamondon, C., Lynch, R. & Al-Tabbaa, A. 2011 Metal retention experiments for the design of soil-mix technology...

First received 21 October 2013; accepted in revised form 12 February 2014. Available online 25 February 2014.