Corrigendum

Corrigendum to: “Genetic control of sodium channel function”
[Cardiovascular Research 57 (2003) 961–973]☆

Hanno L. Tan a,*, Connie R. Bezzina a,b, Jeroen P.P. Smits a, Arie O. Verkerk a,
Arthur A.M. Wilde a

aExperimental and Molecular Cardiology Group, Department of Cardiology, Academic Medical Center, Room M0-052, P.O. Box 22700,
1100 DE Amsterdam, The Netherlands
bDepartment of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

In the original article Figs. 2, 3 and 4 were incorrect. The correct figures are shown on the following pages.
Fig. 2. (A) Representative electrocardiogram of Long QT syndrome type 3 (40 ms/div). Note marked QT interval prolongation with late peaked T waves. There is also sinus bradycardia. (B) SCN5A mutations associated with Long QT syndrome type 3: summary of changes in their biophysical properties. \(\tau_{\text{fast}} \): current decay, time constant of fast component of sodium current decay (fast inactivation); \(\text{inact} \): inactivation; \(V_{\text{1/2}} \): voltage at which 50% of sodium channels are inactivated; \(V_{\text{1/2}} \): voltage at which 50% of sodium channels are activated; \(\Delta \): shift to negative voltage; \(\Delta \): shift to positive voltage; \(\downarrow \): reduction; \(\uparrow \): increase; \(\pm \): unchanged; \(- \): not reported.
Fig. 3. (A) Representative electrocardiogram of Brugada syndrome (40 ms/div). Note ST segment elevation (coved type) with negative T waves, typically seen in right precordial leads V1–V3 (here V1). There is also marked PQ interval prolongation. (B) SCN5A mutations associated with Brugada syndrome: summary of changes in their biophysical properties. Same abbreviations as in Fig. 2B.
Fig. 4. (A) Representative electrocardiogram of isolated conduction disease (40 ms/div). Note marked QRS widening and PQ interval prolongation. (B) SCN5A mutations associated with isolated conduction disease: summary of changes in their biophysical properties. Same abbreviations as in Fig. 2.