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Are We Ready for Genome-wide Association Studies?
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The tension between hypothesis-driven and exploratory
research crosses scientific disciplines (1) but is particularly well
illustrated in the current excitement about genome-wide
association (GWA) studies. Standard linkage analysis has the
potential to localize major susceptibility genes to within a few
million base pairs using as few as 300 microsatellite markers
for a genome-wide scan. However, it has increasingly been
recognized that linkage analysis may not be powerful enough
to detect genes involved in ‘‘complex diseases’’ like cancer,
which are caused by multiple genes and multiple environ-
mental factors, interacting in complicated ways. Thus, molec-
ular epidemiologists are turning to candidate-gene association
studies or studies of entire candidate pathways, driven by
specific biological hypotheses, as an alternative approach.
Now comes the prospect, first seriously proposed a decade ago
by Risch and Merikangas (2), of testing virtually all f10
million common single nucleotide polymorphisms (SNP) in
the human genome for associations with a given disease, either
directly or by linkage disequilibrium with other SNPs. Recent
developments in ultra-high-volume genotyping chip technol-
ogy now make the study of as many as 500,000 SNPs
commercially viable. Coupled with the extensive haplotype
tagging SNP information being catalogued by the HapMap
project (3), it now seems that that this density may be sufficient
to permit indirect tests of association with the majority of all
common SNPs (4), although this fundamental assumption has
recently been questioned (5). Does this development mark the
end of pathway-driven research? I suggest that it is possible to
marry the hypothesis-driven and exploratory approaches in a
way that will make better use of this novel but expensive
technology.

Background

The first GWA study was published in 2002 (6), using an early
100 K version of the technology. Within the last year, several
others have been published (7-10), and many other studies
have been launched or proposed. Time will tell whether these
early reports represent true positives, but the simultaneous
publication in Science of two confirmatory studies (11, 12) for
the Complement Factor H association with age-related
macular degeneration along with the GWA scan has sparked
great enthusiasm, and several reports have seemed subse-
quently confirming the association. However, this finding
remains to be confirmed in population-based studies, which
may be less vulnerable to selection bias and less weighed
towards advanced cases.

Is the time really ripe for wholesale adoption of the GWA
approach? The cost of the genotyping technology is bound to
keep falling over the next few years, and many study design
and analysis issues remain to be resolved. Yet, investigators

may feel that if they do not hop on this bandwagon before
everyone else does, they will be left out. But there simply are
not enough resources to fund all eager investigators, even all
those with already established and well-characterized cohorts
or case-control samples for which the major expense would be
the genotyping costs.

So how many GWA studies can the scientific community
afford and how should they be prioritized relative to
hypothesis-driven studies? By any standard, these will be
expensive. Supposing a typical study might require at least
1,000 cases and 1,000 controls and at current genotyping costs
of approximately US$1,000 per sample for a 500 K chip, the
genotyping alone will cost more than US$2 M per study. DNA
pooling offers the potential to dramatically reduce the
genotyping cost, but substantial technical difficulties remain,
and the power and false-positive rates of the approach relative
to individual genotyping remain uncertain (13-17).

Are multiple GWA studies really needed? Replication of
entire scans is not a good use of limited resources, except
perhaps for protection against false negatives; thus, there is
little need for multiple studies of the same condition, but there
will be many investigators well poised to propose such studies
for any given disease. Competition for the best proposal(s) is a
sensible approach, but rather than using standing disease-
oriented study sections, in which GWA proposals would have
to compete against lower-cost, hypothesis-driven proposals for
the same disease, GWA proposals for a broad range of diseases
should be evaluated against each other. At this early stage of
the methodology, this would help prioritize the available
funds among the diseases for which GWA studies are likely to
be the most informative and would also help refine the
methods by ensuring some uniformity of standards against
which they would be judged.

Recent Initiatives

It is encouraging that several recent NIH initiatives have taken
steps in this direction, in addition to European initiatives, such
as the Welcome Trust Case-Control Consortium.1 In April
2005, several Institutes pooled resources and allocated US$5.4
M to establish a cooperative group to investigate appropriate
methods for design and analysis of such studies.2 In February
2006, the National Heart, Lung and Blood Institute released a
Request for Applications3 committing US$20 M for four to six
GWA studies across a range of conditions. The Center for
Inherited Disease Research began receiving applications in
March 2006 for genome-wide SNP genotyping4, along the lines
of their long-standing microsatellite genotyping service for
linkage studies. Illumina 100 K, 300 K, or 500 K panels will be
offered followed by custom genotyping up to 24 K SNPs on the
second sample. On February 8, 2006, NIH announced two
major initiatives aimed at providing the first stage genotyping
for about 20 large case-control studies. The first of these,
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1 http://www.wtccc.org.uk/
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4 http://www.cidr.jhmi.edu/human_gwa.html
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known as the Genetic Association Information Network
(GAIN)5, will be funded by the private sector through the
public-private partnership of the Foundation for the NIH and
is expected to support at least seven studies, initially using
Perlegen and Affymetrix platforms. The second initiative,
known as the Genes and Environment Initiative (GEI)6 will be
publicly funded, if Congress approves the request, and will
support about another dozen studies for each of 4 years. A
formal Request for Applications for the GEI initiative is
expected at a later date, once funding has been committed.

Both the GAIN and GEI initiatives plan to select studies by a
rigorous peer review process (separately for each initiative).
Applications for the GAIN initiative will be due in late April
2006, and genotyping may be under way as early as late
summer 2006, a remarkably short interval compared with
traditional grant cycles. In preparation for these various
initiatives, Institutes have surveyed existing studies that may
qualify and have considered their own priorities. But inves-
tigators who have not been privy to the planning process may
find it difficult to meet the short deadline planned for at least
the GAIN initiative, and it will be a challenge to organize an
effective peer review process on such a short timeline with the
uncertainties of several overlapping initiatives. Meanwhile, the
funds available and priority given to various proposals that are
currently under review through the traditional R01 mechanism
could be affected by these new initiatives.

It is premature to issue rigid guidelines for the conduct of
GWA studies, given the infancy of the field and the rapid
evolution of the technology, design, and analysis methods,
although potential applicants would benefit from some guide-
lines for review of proposals. In this spirit, the CIDR Access
Committee has developed a set of criteria for investigators
planning applications for their SNP genotyping service. The
draft recommendations arose from a roundtable discussion at
the October 2005 annual meeting of the International Genetic
Epidemiology Society, chaired by Dan Schaid, with input from
Leonid Kruglyak and David Clayton, among others. The draft
criteria include such considerations as the potential societal
benefit, the evidence in support of a genetic basis, plans for
replication, data sharing, and localization of suggested associ-
ations, as well as a host of methodologic issues discussed below.

Methodologic Challenges

Several recent reviews (18-23) have discussed a range of
methodologic challenges in the design and analysis of GWA
studies in detail. Some of the issues that require careful
consideration include DNA pooling versus individual geno-
typing; choice of genotyping platform and selection of panel of
SNPs; use of multistage designs; control of, and allowance for,
genotyping errors; population-based versus family-based
designs and adjustment for population stratification; and
multiple comparisons and criteria for claiming statistical
significance.

Sample Size and Power. To get a sense of the magnitude of
the task, it is helpful to consider some rough sample size
requirements. Suppose one planned to test 500,000 single-
SNP associations in a single-stage case-control study and
wished to control the genome-wide type I error rate at a = 5%
(i.e., an expected number of false positives across the entire
genome of only 0.05), so that any statistically significant
associations would be very likely to be true positives. A
conservative Bonferroni correction would require a single-SNP
significance level of a = 0.05/500,000 = 1 � 10�7. Table 1
indicates the numbers of case-control pairs that would be

required to attain 95% power for a range of genetic relative
risks and population allele frequencies. These numbers might
be reduced by about a factor of two by using a multistage
design, in which only the first sample would be tested on
the complete panel, with subsequent samples tested on only a
subset of the most significant markers (24-26). On the other
hand, testing multiple genetic models, additional SNPs or
haplotypes, subgroups, or interactions would require an even
stricter significance level and larger sample sizes. Thus, these
sample size requirements should be taken as only rough
guidelines. Methods for significance testing in GWA studies
are the subject of an important research area (27-35).

Replication. It is not clear that GWA studies should be held
to the same standards of replicability as candidate gene studies.
The huge cost of GWA studies, and thus the likelihood that few
of them will ever be undertaken for any given disease,
demands that they should be designed to have very high
power, even if at the cost of relatively high false positive rates.
If we are going to the bother of looking for the proverbial
needle in a haystack, we want to be assured that we have a good
chance of finding it, if it is really there, because we are not going
to have the energy, or money, to do it all over again! Among
such a large number of tests, there is no guarantee that the
expected modest number of true positives will rank near
the top of the list (36). For example, in the Ozaki et al. (6),
GWA scan of 65,671 SNPs, the one functional association was
less significant than 200 spurious associations that failed to
replicate. To find a true association of the observed size
(relative risk = 1.6) with at least 50% power, one would have to
follow up >3,400 of the most significant associations! On the
other hand, because the yield of positive associations could
also be very large, the cost and manpower needed to follow up
on each will be considerable. Should few of these associations
be replicated, the societal investment in this high-risk exper-
iment could quickly turn sour.

Multistage sampling designs can be thought of as a form of
built-in replication, but if the same epidemiologic study design
and population is used in the different stages, this is really just
a form of statistical replication (albeit a more efficient one than
conducting two or more separate studies; ref. 37). True
scientific replication involves different investigators, studying
different populations, using different study designs, with
potentially different strengths and weaknesses. In a recent
editorial, Nature Genetics has made this a formal requirement
for publication: ‘‘Because meta-analysis has shown that many
published associations could not be replicated, we now
stipulate that the association should be observed in two
independent cohorts’’ (38).

An example of such an article is the recent publication of
four variants associated with myocardial infarction, found
to be significant in two separate case-control samples of
pooled DNA, followed by replication in a third independent
case-control comparison using individual genotyping (9).
Replication has also been addressed in an editorial in this

Table 1. Numbers of case-control pairs required to attain a
significance level of a = 1 � 10�7 with 95% power in a
single-stage study, assuming a multiplicative genetic model
with the indicated relative risks per allele (i.e., homozygote
relative risk being the square of the indicated relative risks)

Relative risk MAF = 5% MAF = 10% MAF = 20%

1.2 28,000 15,000 8,700
1.5 5,200 2,800 1,700
2.0 1,600 870 540
2.5 830 470 300
3.0 540 310 200

Abbreviation: MAF, minor allele frequency.

5 http://www.fnih.org/GAIN/GAIN_home.shtml
6 http://www.genome.gov/17516707
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journal (39), albeit in the context of candidate gene rather than
GWA studies, and sparked an extensive series of follow-up
commentaries (40-45). Without belaboring these points, suffice
it to say that true scientific replication will be essential to make
sense of the mass of associations likely to result from GWA
studies, but we are hesitant to follow the lead of Nature
Genetics by making rigid requirements for replication within a
single report, particularly if attaining that goal were to come at
the expense of multiple under-powered studies (45).

Data Sharing. Perhaps the best way of ensuring scientific
replication is to embrace a culture of data sharing, to facilitate
investigators’ pursuit of alternative analyses of each others’
data: generating hypotheses they can attempt to replicate in
their own data or replicating their own findings in indepen-
dent data. The recently announced GAIN initiative is to be
commended for embracing these principles: all genotype data
will be made public as soon as they are generated and checked
for quality, similar to the rules for the Human Genome and
HapMap projects. The phenotype data will be made available
as soon as the genotype data are, through an NIH access
committee. The contributing investigators will have a 9-month
window for exclusive right to publish but will receive the data
at the same time as anyone else.

The sheer scale of GWA data sets, combined with the usual
need to protect confidentiality, will pose formidable practical
challenges to sharing data in a manner that will be genuinely
useful. Although the GAIN plan is to post-raw genomic data
on individual subjects, standards could be developed for
highly detailed aggregate data tables for studies where the
informed consent would preclude public posting of individual
data. As a minimum, these might include summary statistics
for all single-SNP associations and details of the methods used
to obtain the statistical results, but more thought is needed
about whether this should include haplotype associations,
gene-gene or gene-environment associations, or various
subgroup analyses. Rather than routinely posting such an
enormous number of associations one might consider making
the data available in through an online ‘‘automatic hypothesis-
testing machine’’ with a limited menu of user-specified criteria
that could perform the first cut at a replication analysis.
Promising associations could then be followed-up with more
detailed collaborative analyses by the investigators of both the
discovery and replication studies before journal publication.

Interactions. Testing of interaction effects poses particular
challenges in the context of GWA studies (46), first because of
the enormous number of potential interactions, 2.5 � 1011

pairwise SNP � SNP interactions in a typical whole genome
scan, and similarly huge numbers for even a univariate scan of
SNP associations with expression of all known genes (47), and
by the general lack of specific prior hypotheses for any of
them, beyond a vague belief that interactions are likely to be
important. There is even more doubt about the reliability of
interaction reports than for main effects, if only because of the
larger multiple-comparison problem, the smaller sample sizes,
and the low priors for any particular interaction, not to
mention the poor track record of replication (44, 48-51).

So how should such a vague belief about interactions be
accommodated? In studying lung cancer, one might strongly
suspect that smoking could be an important modifier (52), but
would it make more sense to sample smokers or nonsmokers?
Perhaps simple random sampling or oversampling the
extremes of the distribution of relevant environmental factor(s)
might be the best gamble, in the absence of more specific
hypotheses, with the hope of testing interactions in the
analysis. But then how much of the type I error rate is one
willing to spend on testing interactions at the expense of power
for detecting main effects? Is one perhaps better off limiting the
testing of interactions to pairs of factors attaining some
threshold for main effects?

Marchini et al. (53) have shown that exhaustive testing of all
possible pairwise interactions can be more powerful than
testing only the univariately significant ones, depending of
course upon the true interaction model. For candidate gene
pathways, Millstein et al. (54) have proposed a ‘‘Focused
Interaction Testing Framework’’ that seems to outperform a
leading alternative approach, Multifactor Dimension Reduc-
tion (55), for searching for multidimensional interactions
without requiring main effects, but it remains to be seen
whether these approaches will be useful for GWA studies (56).

In any event, identification of genes that mediate or modify
the effects of environmental hazards, as well as gene-gene
interactions, are an important priority of both the scientific
community and government agencies, as reflected in the
recent National Heart, Lung, and Blood Institute and GEI
announcements. Indeed, the GEI initiative involves a sub-
stantial commitment to developing new environmental
measurements and incorporating them into GWA studies.
Ironically, however, the GEI initiative coincided with the
announcement of the cancellation of the National Children’s
Study (57), which could have set the groundwork for
prospective evaluation of gene-environment interactions at
least for common early-onset conditions (58), although an
adult cohort would likely be more useful for studying most
cancers, while also allowing for enrollment of their offspring
and subsequent generations (59).

A Unified Approach

Returning to the question posed at the outset about pathway-
driven versus exploratory approaches, some attractive
approaches to marrying to two are the ‘‘weighed false
discovery rate’’ approach (60) and a Bayesian false-discovery
rate approach (42). Essentially, the weighed false-discovery
rate spends the false discovery rate nonuniformly across all
associations tested by using prior knowledge (in their example,
a prior linkage trace). Although Roeder et al. warn against
trying many different weighting functions and choosing the
one that yields the greatest number of statistically significant
findings (or most satisfying set of them), hierarchical regres-
sion models (61, 62) offer a valid way of incorporating a broad
range of prior genomic information (location relative to genes,
putative function, evolutionary conservations, biological path-
ways, previous linkage or association findings, or ‘‘-omics’’
databases; refs. 39, 63) into a general framework for prioritiz-
ing associations from an initial GWA scan for follow-up in
later stages of a multistage design or for replication in other
studies. Current skepticism about the utility of at least
presently available genomic information (43) may change as
these bioinformatics tools mature.

Clearly, the next few years should be an exciting time as
GWA studies get under way, and the methods for conducting
them become better developed. The interpretation of the mass
of data that will result can be expected to keep investigators and
pundits entertained long into the future. The stakes are high. If
the diseases and specific studies are chosen wisely, the methods
effective, and the information shared widely, the payoff could
be considerable. But careful preparation is essential, lest
high-profile failures diminish the public’s and the scientific
community’s support of such research in the future.
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