Decline in recycled water quality during short-term storage in open ponds
Jennifer Higgins, Jan Warnken, Peter R. Teasdale and J. Michael Arthur

ABSTRACT

Changes were assessed in urban wastewater treatment plant (WWTP) effluent quality during short-term storage in open surface ponds. Water quality was monitored over five years at the inlets and outlets of open storage ponds located at three biological nutrient removal plants. Pond influent temperature, rainfall and sewage inflow were not found to be major factors. However, there was a trend for water temperature to be correlated negatively with nitrogenous nutrient and positively with faecal coliform values. The observed increases in faecal coliforms, nutrients and chemical oxygen demand were most likely caused through avian faecal contamination. These increases challenge the notion that pond storage has a positive or negligible effect on effluent quality. The observed one to two orders of magnitude increase in faecal coliforms may affect reuse scheme viability by limiting the range of uses under Australian water recycling guidelines. Potential improvements to short-term recycled water storage management at WWTPs could include the integration of monitoring requirements in WWTP discharge licences and recycling guidelines and the monitoring of all water quality parameters, including microbiological ones, at the point of entry into the recycled water distribution system, after WWTP storage, rather than directly post-disinfection.

Key words | effluent, recycled water quality, storage ponds

INTRODUCTION

The climatic trends of declining rainfall and increasing average temperatures, observed in Australia over the last 50 years, are predicted to continue into the future with an estimated 2–5% decline in annual rainfall and a 20% increase in drought conditions by 2030 (CSIRO 2007; IPCC 2007). In fact, severe widespread droughts, in some cases the longest on record, have been experienced recently and have produced water shortages throughout most of the country. The sustained stress on conventional water resources, such as rivers, dams and aquifers, experienced during these droughts, has highlighted the urgent need to develop alternative water sources, such as recycling the treated effluent from wastewater treatment plants (WWTPs). Such alternatives are required to mitigate the demand on potable water supplies not only in inland arid areas but also in heavily populated coastal regions of Australia (Radcliffe 2004). The widespread introduction of household water restrictions in Australia, during the recent droughts, and the growing public acceptance for water recycling options for domestic use (Hurlimann & McKay 2007) have promoted the use of WWTP effluent as an alternative source of water.

Despite this recent swing in public acceptance, in principle there is still considerable concern about the quality of treated effluent (Higgins et al. 2002; Po et al. 2003; Toze 2006), especially for uses involving close human contact or ingestion (Po et al. 2005). One possible solution to ameliorate these concerns is to subject effluent from WWTPs to further treatment such as microfiltration and reverse osmosis. This concept is currently being considered for large-scale implementation in south-east Queensland,
Australia (Queensland Government 2007) and elsewhere (WSAA 2006; NRMMC 2008). The environmental downside of this approach is the considerable energy demand and associated greenhouse gas emissions that would accompany this solution, except, in the rare event, where nuclear power or renewable energy is locally available. In essence, this practice would exacerbate the climate change which is one of the key drivers for water shortages in the first place. For example, the amounts of energy required for producing and transporting source water for drinking from the desalination of seawater or by additional treatment of recycled water are 4.5 or 2.8 kWh m\(^{-3}\), respectively, for the Sydney water system, which are considerably greater than for water obtained by dam catchment (WSAA 2006).

Another option with, in the long term, a considerably lower environmental cost is to design new WWTPs for total effluent reuse (Department of Primary Industries, Water & Environment 2002; EPA NSW 2004). However, in many regions, total reuse may not be feasible if rainfall variability affects the demand for recycled water and engenders a need for intermittent storage. A third option is to improve, as much as possible, the performance of those existing WWTPs that have a high quality effluent and to focus on identifying and managing those post-treatment elements that might cause deterioration of this effluent quality prior to use.

One of the most common, yet critical, post-treatment steps in many urban WWTPs is the short-term storage of treated effluent in open surface ponds, prior to discharge to the environment or entry into the recycled water distribution system. Such ponds are exposed to, inter alia, sunlight, wind-induced mixing and sediment re-suspension, introduction of pathogens through wild animals, especially waterfowl, and deposition of wind-borne external pollutants. Other alternatives such as long-term or seasonal storage in reservoirs (Azov & Shelef 1991; Fattal et al. 1995; Juanico & Shelef 1994; Liran et al. 1994; Government of South Australia 1999; EPA Victoria 2003; NRMMC 2006) or storage in aquifers (Government of South Australia 1999; Dillon et al. 2005) are often not available owing to local environmental or space constraints.

Extensive research has been documented on the changes in wastewater quality in ponds and lagoons used for wastewater treatment including wastewater stabilisation ponds and maturation ponds (e.g. Maynard et al. 1999; Shilton 2005). Research has also been conducted on the wastewater quality changes during storage after the completion of the treatment process. However, much of this research to date has focused on storage systems external to the wastewater treatment plants such as deep surface reservoirs (e.g. Azov & Shelef 1991; Fattal et al. 1993; WERF 2003), aquifers (e.g. Dillon et al. 2005) or in surface storage ponds at the point of use, for example at golf courses or crop irrigation schemes (e.g. Murakami & Ray 2000; Bahri et al. 2001). On the other hand, only limited information is available on the changes that may occur in effluent quality during short-term storage in surface ponds at wastewater treatment plants, prior to entry into recycled water distribution systems.

In addition, information provided in Australian national, state and territory guidelines (Table 1), on the management and monitoring of recycled water storages, varies between the different jurisdictions and often does not include information about short-term storage. The paucity of research and lack of clarity in the guidelines about the short-term storage process may lead to the continuation of less than optimal management systems. If this problem is not rectified, then additional energy may be required to reprocess stored recycled water to attain the required quality. This study was undertaken to examine the effects of short-term storage at three WWTP sites to:

- demonstrate the magnitude and variability of changes in the chemical and bacterial quality of effluent, from biological nutrient removal treatment plants, during short-term storage in open ponds at the treatment plants
- investigate any effect of rainfall, temperature and sewage influent flow on water quality changes during storage
- assess the impact of changes in quality on effluent reuse options and compliance with current water recycling guidelines.

METHODS

Water quality monitoring data used for this study was collected at three waste treatment plants (WWTPs) over a five-year period, from July 2001 to June 2006 for WWTPs 1 and 2 and from February 2002 to June 2006 for WWTP 3.
<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>National</th>
<th>Western Australia</th>
<th>Queensland</th>
<th>New South Wales</th>
<th>Victoria</th>
<th>Tasmania</th>
<th>South Australia</th>
<th>Australian Capital Territory</th>
</tr>
</thead>
</table>

Recycled water topic

Recycled water storage
- Storage at
 - (A) or external (X) to WWTP
- Long-term, winter or seasonal storage
 - •
 - •
 - •
 - •
 - •
- Aquifer storage
 - •
 - •
 - •
 - •
 - •
- Covered or uncovered storage
 - •
 - •
 - •
 - •
 - •
- Algal growth during storage
 - •
 - •
 - •
 - •
 - •
- Short circuiting in storage ponds
 - •
 - •
 - •
 - •
 - •
- Health risk due to storage quality
 - •
 - •
 - •
 - •
 - •
- Environmental risk due to storage quality
 - •
 - •
 - •
 - •
 - •
- Birds and storage
 - •
 - •
 - •
 - •
 - •
- Birds at storages as a health risk
 - •
 - •
 - •
 - •
 - •
- Microbial monitoring§ prior to storage
 - Y
 - P
 - Y
 - D
 - P
 - P
 - D
- Indicator of bacterial quality
 - E
 - E or T
 - E
 - T
 - E
 - E or T
 - T
 - T or E

2. Recycled water used for augmentation of drinking water supplies.
3. Recycled water used for purposes other than augmentation of drinking water supplies.
4. Monitoring point for determining the suitability of the recycled water microbial quality for its intended use.
5. Topic mentioned in guideline document; — topic not mentioned in guideline document.
The WWTPs were all located approximately 70 km south of Brisbane on Australia’s eastern seaboard at 27.5° S latitude. The region serviced mainly by these WWTPs had a residential population of 482,500, as of June 2005 (Queensland Government 2006), and experiences an influx of 4.4 million tourists per year.

Wastewater treatment plants

The wastewater treatment plants studied varied in catchment area, treatment capacity and processes, age and storage pond design and retention times (Figure 1). Land uses in each catchment were largely dominated by residential development and infrastructure including tourism complexes, but also included medical facilities, food and beverage outlets and light industries. The three WWTPs have been gradually upgraded over the past 25 years, to increase capacity and include or improve nutrient removal, and their treatment train components differed as a result of variations in capacity, age and original design parameters. Initial separate operating licences were recently rolled into one general licence with compliance levels remaining tailored to each plant’s treatment capability.

Sample collection and water quality analysis

Licence conditions stipulated that the WWTPs had to be operated so that total nitrogen (total-N), total phosphorus (total-P), pH, dissolved oxygen (DO), biochemical oxygen demand (BOD) and total suspended solids (TSS) in the pond outlet samples, and faecal coliforms levels in the pond inlet samples, remained mostly (90 percentile) below individual thresholds set for each WWTP. The water quality data collected by the local water authority and examined during this study also included electrical conductivity (EC), ammonia nitrogen (ammonia-N), oxidised nitrogen (oxidised-N), orthophosphate phosphorus (ortho-P) and chemical oxygen demand (COD).

Water quality data was collected weekly at the storage ponds inlets and outlets over a 5 year period, from July 2001 to June 2006 (WWTPs 1 and 2) and from February 2002 to June 2006 (WWTP 3). The total rainfall and total influent flows for each treatment plant were determined for 1, 3 and 7 day periods prior to the collection of samples for water quality testing.

The tests for COD, TSS, pH, DO, EC and chlorine were performed using standard methods for wastewater analysis (Sections 5220D, 2540D, 4500-H+, 4500-O G, 2510 B and 4500-Cl F in Standard Methods 1998). Results for ammonia-N, oxidised-N, ortho-P and total N and P were obtained by flow injection analysis (Ebina et al. 1983; Sections 4500-NH\textsubscript{3} H, 4500-NO\textsubscript{2} I and 4500-P G in Standard Methods 1998). Membrane filtration (Section 9222D, Standard Methods 1998) was used to count and confirm faecal coliforms. All samples were collected and tested by an accredited laboratory (National Association of Testing Authorities).

Analyses for nutrients, COD and TSS were performed on composite grab samples collected from secondary sedimentation tank outlets, prior to the storage pond inlets, and also on 24 hour composite samples collected at the storage pond outlets. Each faecal coliform value for each storage pond inlet was the median value of 5 grab samples collected, over a 28 hour period, from the outlet of each chlorine contact tank just prior to the storage pond inlets. Faecal coliform concentrations (CFU/100 ml) for the pond outlets were determined on single grab samples, collected at the pond outlets, at the end of the same 28 hour period used.
for pond inlet samples. As this study utilised historical monitoring data, effluent quality was assessed at the sampling points at similar times with no opportunity of studying the same slug of water as it travelled through the storage systems. This problem was mitigated to some extent by the flow balancing effect of the storage ponds and the collection of daily composite samples at the pond outlets.

Data analysis

Faecal coliform concentrations were transformed to \(\log_{10} (CFU/100\text{ml} + 1) \) for all descriptive and inferential statistics. Time sequence plots were generated to illustrate differences between the storage pond inlets and outlets and to examine any variations of these differences with time or season. A non-parametric Wilcoxon signed-ranks test was used to analyse the differences between water quality values in paired samples from these sites. This test negates the need for the underlying distribution to be normal and is unaffected by the potential for sample variance heterogeneity due to the different sampling methodologies. A Monte-Carlo permutation test was used to avoid issues pertaining to dependent observations.

The water quality data was summarised using means and standard errors for each site. To assess quality variability, the number of outlier or extreme outlier values, defined as those being respectively \(>1.5 \) or \(>3 \) times above the third quartile or below the first quartile, were counted for each variable. Spearman correlation analysis was conducted to examine the relationships between water quality values and either flow, rainfall or temperature. All analyses were performed using SPSS© version 13.0.

RESULTS AND DISCUSSION

All data examined in this survey included outlier values which may have been caused by a range of factors including changes in influent flow owing to rain, treatment plant operational changes, unplanned industrial discharges into the sewer system or sample contamination. These outlier values are, however, part of a typical data set and need to be acknowledged and incorporated into effluent management systems, even though they might affect the means and SE values for the various water quality parameters.

Effluent quality changes during surface storage

Irrespective of the differences in storage pond design, capacity or retention times the values for practically all quality parameters studied during storage, i.e. nutrients, COD, TSS and faecal coliforms, were significantly higher at the storage pond outlets than at the inlets (Table 2). The only exceptions were the lower TSS at the WWTP 2 outlet and the lack of a significant difference between the inlet and outlet pairs for COD at WWTP 2 and ammonia-N at WWTP 3. The greatest changes during storage occurred in faecal coliform concentrations, as illustrated for WWTP 2 in Figure 2, with increases of one or two orders of magnitude observed across the three WWTPs (Table 2). In terms of quality variation over time, the standard errors of the means were low for the majority of quality parameters at inlet and outlet sites. However, instances of higher variability were noted for ammonia-N and oxidised-N values which reflect the higher percentage of outlier and extreme values reported for these parameters (Table 2).

These results indicated that various water quality characteristics deteriorated during short-term storage in open, surface ponds. However, it was the substantial increase in faecal coliform counts during storage that was of particular concern. These findings support those of Murakami & Ray (2000) who observed faecal coliform growth in an open storage reservoir, containing secondary-treated, filtered and chlorinated effluent, and Bahri et al. (2001) who noted a deterioration in the bacterial quality of treated effluent stored in open ponds used for golf course irrigation. These indicator organisms could have increased by continuing to multiply in the pond water column or sediment during storage. Alternatively, the bacteria could have recovered after disinfection as has been reported by Shuval et al. (1973) who observed regrowth of faecal coliforms in chlorinated effluent held in a storage reservoir. However, as birds are a potential source of faecal indicator bacteria (Murphy et al. 2005; Abbott et al. 2006), the faecal coliforms may also have been introduced through contamination by avian faeces. In fact, current Australian guidelines for water recycling advise that wild birds can be a health
hazard (NRMMC 2006) and can act as disease vectors (EPA Victoria 2003).

The WWTPs used in this study were situated in areas of natural wildlife habitat and wild birds were often seen on or near the storage ponds; the quantitative order of birds present were, from highest to lowest, WWTP 1, 2 and 3. Eleven species of wild birds were observed roosting on or near the water, and most likely contributing faecal contamination to the storage ponds; the predominant species were Eurasian coot (Fulica atra) and Pacific black duck (Anas superciliosa). Consequently, in this case, the most likely cause of the increase in faecal coliforms was contamination by avian faecal material that may have entered the ponds by direct deposition or by being washed off the sloping sides through water level changes during pumping.

This avian faecal contamination may have also caused the small, but statistically significant, increases observed in nutrient levels. Alternatively, the changes in nutrients may have been caused by nutrient fluxes between the water column and the sediments in the storage ponds (Fenchel et al. 1998). The specific factors causing the consistent increases in levels of both chemical and bacterial water quality parameters during surface storage, observed at all three WWTPs, were not identified in this survey. With the continuing introduction of improved wastewater treatment

Table 2 | Variability of recycled water quality and significance of differences between paired samples collected from pond inlets and pond outlets at each WWTP

<table>
<thead>
<tr>
<th>Quality parameter</th>
<th>WWTP</th>
<th>Inlet Mean</th>
<th>SE</th>
<th>Outlet Mean</th>
<th>SE</th>
<th>n</th>
<th>Sig†</th>
<th>O</th>
<th>E</th>
<th>O + E</th>
<th>O</th>
<th>E</th>
<th>O + E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia-N (mg l⁻¹)</td>
<td>1</td>
<td>0.42</td>
<td>0.054</td>
<td>0.63</td>
<td>0.045</td>
<td>252</td>
<td>***</td>
<td>13</td>
<td>17</td>
<td>11.9</td>
<td>18</td>
<td>8</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.66</td>
<td>0.060</td>
<td>0.89</td>
<td>0.059</td>
<td>256</td>
<td>***</td>
<td>3</td>
<td>4</td>
<td>2.7</td>
<td>13</td>
<td>5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.57</td>
<td>0.115</td>
<td>2.43</td>
<td>0.096</td>
<td>224</td>
<td>0.054 NS</td>
<td>7</td>
<td>0</td>
<td>3.1</td>
<td>2</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Oxidised-N (mg l⁻¹)</td>
<td>1</td>
<td>0.89</td>
<td>0.051</td>
<td>1.13</td>
<td>0.043</td>
<td>252</td>
<td>***</td>
<td>14</td>
<td>5</td>
<td>7.5</td>
<td>13</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.38</td>
<td>0.052</td>
<td>1.83</td>
<td>0.043</td>
<td>256</td>
<td>***</td>
<td>13</td>
<td>3</td>
<td>6.3</td>
<td>9</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.22</td>
<td>0.188</td>
<td>7.39</td>
<td>0.186</td>
<td>224</td>
<td>***</td>
<td>7</td>
<td>0</td>
<td>3.1</td>
<td>3</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Ortho-P (mg l⁻¹)</td>
<td>1</td>
<td>3.65</td>
<td>0.052</td>
<td>3.77</td>
<td>0.041</td>
<td>252</td>
<td>***</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>2</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.33</td>
<td>0.040</td>
<td>1.58</td>
<td>0.043</td>
<td>256</td>
<td>***</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>6</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.75</td>
<td>0.044</td>
<td>2.87</td>
<td>0.033</td>
<td>223</td>
<td>***</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total-N (mg l⁻¹)</td>
<td>1</td>
<td>2.27</td>
<td>0.080</td>
<td>2.81</td>
<td>0.065</td>
<td>253</td>
<td>***</td>
<td>6</td>
<td>6</td>
<td>4.7</td>
<td>4</td>
<td>5</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.98</td>
<td>0.075</td>
<td>3.74</td>
<td>0.070</td>
<td>256</td>
<td>***</td>
<td>6</td>
<td>3</td>
<td>3.5</td>
<td>6</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.87</td>
<td>0.223</td>
<td>8.21</td>
<td>0.206</td>
<td>38</td>
<td>***</td>
<td>1</td>
<td>0</td>
<td>2.6</td>
<td>4</td>
<td>0</td>
<td>10.5</td>
</tr>
<tr>
<td>Total-P (mg l⁻¹)</td>
<td>1</td>
<td>3.89</td>
<td>0.054</td>
<td>4.03</td>
<td>0.044</td>
<td>256</td>
<td>***</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.48</td>
<td>0.040</td>
<td>1.76</td>
<td>0.046</td>
<td>257</td>
<td>***</td>
<td>3</td>
<td>1</td>
<td>1.6</td>
<td>8</td>
<td>4</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.86</td>
<td>0.118</td>
<td>3.04</td>
<td>0.085</td>
<td>38</td>
<td>**</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5.3</td>
</tr>
<tr>
<td>COD (mg l⁻¹)</td>
<td>1</td>
<td>38.4</td>
<td>0.803</td>
<td>39.9</td>
<td>0.667</td>
<td>257</td>
<td>*</td>
<td>10</td>
<td>5</td>
<td>5.8</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>39.3</td>
<td>0.673</td>
<td>38.2</td>
<td>0.660</td>
<td>257</td>
<td>0.083 NS</td>
<td>14</td>
<td>7</td>
<td>8.2</td>
<td>10</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>37.1</td>
<td>0.675</td>
<td>40.1</td>
<td>0.714</td>
<td>225</td>
<td>***</td>
<td>4</td>
<td>3</td>
<td>3.1</td>
<td>5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>Total suspended solids (mg l⁻¹)</td>
<td>1</td>
<td>4.33</td>
<td>0.141</td>
<td>6.05</td>
<td>0.239</td>
<td>257</td>
<td>***</td>
<td>4</td>
<td>1</td>
<td>1.9</td>
<td>4</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.60</td>
<td>0.183</td>
<td>5.53</td>
<td>0.150</td>
<td>256</td>
<td>***</td>
<td>6</td>
<td>4</td>
<td>3.9</td>
<td>15</td>
<td>10</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.71</td>
<td>0.136</td>
<td>4.42</td>
<td>0.158</td>
<td>224</td>
<td>***</td>
<td>3</td>
<td>0</td>
<td>1.3</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Log_{10} faecal coliforms (CFU/100 ml)</td>
<td>1</td>
<td>0.894</td>
<td>0.039</td>
<td>2.648</td>
<td>0.041</td>
<td>260</td>
<td>***</td>
<td>4</td>
<td>1</td>
<td>1.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.259</td>
<td>0.032</td>
<td>1.716</td>
<td>0.044</td>
<td>256</td>
<td>***</td>
<td>2</td>
<td>0</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.044</td>
<td>0.027</td>
<td>2.200</td>
<td>0.044</td>
<td>226</td>
<td>***</td>
<td>6</td>
<td>0</td>
<td>2.7</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

n = number of paired samples; SE = standard error; O = number of outlier values; E = number of extreme outlier values.
†Significance of difference between paired samples using a randomised Wilcoxon Signed Ranks test, with ***p < 0.001, **p < 0.01, *p < 0.05 and NS = not significant.
processes worldwide, the quality of the recycled water entering storage systems will continue to improve and, consequently, the effect of any contamination during storage will become more significant. Further research is required to identify the causes of the undesirable deterioration in recycled water quality during open storage at WWTPs, so that appropriate mitigating management options can be developed.

During the study period, the values at the pond inlets for mean total chlorine \(\pm \text{SE} \) were 1.0 \(\pm \) 0.03, 1.8 \(\pm \) 0.05 and 2.6 \(\pm \) 0.06 mg l\(^{-1}\) for WWTPs 1, 2 and 3 respectively and less than the chlorine detection limit of 0.2 mg l\(^{-1}\) at the pond outlets. Chlorine concentrations are difficult to maintain in open ponds since chlorine decomposes with exposure to light or agitation. In addition, the chlorine demand imposed by any insoluble organic matter in the ponds, such as microbial cells, would ensure that any free hypochlorite ions would be removed from solution. Both of these factors would have contributed to the reduction in total chlorine observed in the storage ponds.

The mean \(\log_{10} \) (faecal coliform + 1) values at the pond outlets were 2.6, 1.7 and 2.2 for WWTPs 1, 2 and 3, respectively (Table 2). Thus, the WWTP with the highest faecal coliform levels at the pond outlet, WWTP 1, had the lowest total chlorine values at the pond inlet. These findings support those of Shuval et al. (1973) who found that regrowth of coliforms in chlorinated effluent held in a storage reservoir appeared inversely correlated to the residual chlorine in the storage reservoir. After the study period from which the data was obtained, the total chlorine at the pond inlet for WWTP 1 was increased to 3.1 \(\pm \) 0.21 mg l\(^{-1}\) and the retention time reduced to \(<\) 24 hours. These operational changes were maintained for 4 months during which time the mean \(\log_{10} \) (faecal coliform + 1) value at the pond outlets was reduced from 2.65 \(\pm \) 0.04 to 1.1 \(\pm \) 0.16. Even though these combined changes to pond management were not implemented in a manner to enable the cause of the reduction to be identified, the results demonstrate that they were effective at reducing faecal coliform levels.

Effluent quality changes with flow, rainfall and temperature

In this study, WWTPs 1, 2 and 3 processed average sewage inflows of 71,500 (56,800–197,400), 33,500 (25,600–86,300) and 26,500 (19,700–69,200) m\(^3\) day\(^{-1}\) with peak sewage inflows of 3,960, 5,040 and 4,320 m\(^3\) h\(^{-1}\),
respectively. Only one-third (32%) of the correlations between sewage inflow and water quality values at the pond inlet and outlet sites were significant \((p < 0.01)\) (Table 3). As the WWTPs were designed to produce effluent of a specified quality at up to three times the average dry weather flow, it was not unexpected to find that sewage inflow had a minimal correlation with effluent quality. The annual rainfall was 800, 1,500, 1,200, 1,600 and 1,500 mm

<table>
<thead>
<tr>
<th>Quality parameter</th>
<th>Pond inlet</th>
<th>Pond outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWTP Flow* Rain* Temp†</td>
<td>WWTP Flow* Rain* Temp†</td>
<td></td>
</tr>
<tr>
<td>Ammonia-N ((\text{mg l}^{-1}))</td>
<td>1 NS NS NS NS NS -0.30**</td>
<td></td>
</tr>
<tr>
<td>Oxidised-N ((\text{mg l}^{-1}))</td>
<td>2 -0.35** -0.19** -0.30** -0.37**</td>
<td></td>
</tr>
<tr>
<td>Ortho-P ((\text{mg l}^{-1}))</td>
<td>1 NS NS NS -0.20** NS -0.44**</td>
<td></td>
</tr>
<tr>
<td>Total-N ((\text{mg l}^{-1}))</td>
<td>2 NS NS NS NS NS -0.54** NS -0.18**</td>
<td></td>
</tr>
<tr>
<td>Total-P ((\text{mg l}^{-1}))</td>
<td>3 -0.19** NS NS NS NS -0.23**</td>
<td></td>
</tr>
<tr>
<td>COD ((\text{mg l}^{-1}))</td>
<td>1 NS NS NS NS NS NS</td>
<td></td>
</tr>
<tr>
<td>Total suspended solids ((\text{mg l}^{-1}))</td>
<td>2 NS NS NS NS NS NS</td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity ((\text{mS cm}^{-1}))</td>
<td>3 NS NS NS NS NS NS</td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen ((\text{mg l}^{-1}))</td>
<td>1 - - - - -0.42** NS NS</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>2 - - - - NS NS 0.39**</td>
<td></td>
</tr>
<tr>
<td>Log10 faecal coliforms ((\text{CFU/100 ml}))</td>
<td>3 - - - - NS NS NS</td>
<td></td>
</tr>
</tbody>
</table>

*Sewage influent flow \((\text{m}^3)\) or rainfall \((\text{mm})\) over the 7 days prior to water quality testing.

†Temperature \(\left({}^\circ\text{C}\right)\) of pond influent prior to chlorination at WWTP 2 on morning of water quality testing.

Spearman correlation: ** \(p < 0.01\) and NS = not significant.
during the 5 years of this investigation; less than 16% of the correlations of rainfall with water quality data were significant \((p < 0.01)\) (Table 3). However, despite the low number of significant correlations between water quality parameters and either rainfall or flow, 44% of the water quality outliers occurred after higher than average rainfall or flow events. During this study, the mean water temperature prior to the pond inlet was 22.6°C \((17–28°C)\) and 60% of pond inlet and outlet water quality values were significantly \((p < 0.01)\) correlated with the pond inlet water temperatures (Table 3).

The majority (64%) of the correlations of water quality, with flow, rainfall or temperature, were not significant \((p > 0.01)\). Those that were statistically significant displayed varying trends across the three WWTPs and had low correlation coefficients, ranging from \(-0.17\) to \(-0.55\) for sewage inflow, \(0.14\) to \(-0.32\) for rainfall and \(-0.16\) to \(-0.48\) for temperature (Table 3). The only instances where all three WWTPs showed the same significant trend were a negative correlation between pond influent temperature and pond inlet total suspended solids, pond outlet ammonia or oxidised-N and a positive correlation between pond inlet temperature and faecal coliforms (Table 3).

Risk assessment and water recycling guidance

In Australia, effluent reuse schemes can be introduced and maintained without any specific licence under federal or state legislation. Instead, governments have opted to use the national guidelines (NRMMC 2006, 2008) along with state water recycling guidelines as the only widely applicable quality control instruments. Both federal and state guidelines place a strong emphasis on risk management through the estimation of human health risks, expressed as ‘disability adjusted life years’ (DALYs) in the national guidelines (NRMMC 2006), and through the implementation of environmental management and audit systems supplemented with water quality objectives for designated uses of recycled water. The water quality objectives for various uses for *Escherichia coli* (or thermotolerant coliforms) consistent with a tolerable risk of \(<10^{-6}\) DALYs per person per year are shown in Table 4.

All current Australian recycled water guidelines mention the storage of recycled water either at or external to the treatment plant (Table 1). Most guidelines refer to long-term, winter or seasonal storage and four guidelines include aquifer storage. The guidance varies on the topics of health or environmental risks due to the storage of recycled water and on monitoring requirements (Table 1). Three guidelines recommend *E. coli* as the bacterial indicator organism, three recommend thermotolerant coliforms and a further three guidelines state that either indicator can be used. In addition, the microbial monitoring point, for determining the suitability of the recycled water for its intended use, is variously stated to be prior to storage, at the entry to the distribution system or at the point of supply. Two guidelines acknowledge the health risk of recycled water contamination during storage yet recommend that the microbiological monitoring point to determine suitability be upstream of any storage (Table 1).

A quantitative microbial risk assessment of the recycled water, from the WWTPs used in this study, identified that even though the increased health risk to users due to microbial changes during storage would be small, it could potentially exceed the \(<10^{-6}\) DALY recommended in the national guidelines (Deere et al. 2007). Ensuring that the permissible uses of the recycled water were allocated according to the quality of the water leaving, rather than entering, the storage ponds would mitigate this risk. Consequently the monitoring point for recycled water quality should be downstream, not upstream, of any recycled water storage ponds located at the WWTPs.

Previous comparison of recycled water guidelines and effluent discharge licences has identified the detrimental lack of integration between the two advisements: for example, when *E. coli* is specified for one and thermotolerant coliforms for the other, an additional biochemical confirmation test is required to count both indicators, which adds to the monitoring cost (Higgins et al. 2004). Current licence conditions for the discharge of effluent from secondary treatment plants to land or water in Queensland require faecal coliform levels to be generally (90 percentile) \(<150\) with a maximum of 600 CFU/100 ml. Queensland guideline (Government of Queensland 2008) indicator levels for recycled water, however, are set at logarithmic intervals for *E. coli* which illustrates the continuing need for integration of the two advisements. In this study, using
WWTPs with short-term storage in open lagoons, the high level of compliance (generally above 95%) with discharge or reuse quality objectives at the pond inlets is reduced across the three WWTPs to between 13% and 60% at the pond outlets (Table 4). These findings strongly support the guidelines' recommendation to validate log removal assumptions for individual components of the treatment processes, notably in the storage systems.

Table 4 | Compliance with water quality objectives for designated uses of recycled water (NRMMC 2006) and with WWTP operating licences

<table>
<thead>
<tr>
<th>Guideline compliance</th>
<th>Licence compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWTP</td>
<td>Pond inlet (%)</td>
</tr>
<tr>
<td>E. coli or thermotolerant coliforms (see below)</td>
<td>Faecal coliforms (requirement for discharge to land or water)</td>
</tr>
<tr>
<td>< 100 CFU/100 ml</td>
<td>1 95.4 13.4</td>
</tr>
<tr>
<td></td>
<td>2 93.5 60.4</td>
</tr>
<tr>
<td></td>
<td>3 95.6 33.2</td>
</tr>
<tr>
<td>< 1,000 CFU/100 ml</td>
<td>1 98.9 69.0</td>
</tr>
<tr>
<td></td>
<td>2 99.2 97.3</td>
</tr>
<tr>
<td></td>
<td>3 100.0 89.4</td>
</tr>
<tr>
<td>< 10,000 CFU/100 ml</td>
<td>1 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td>2 99.6 99.6</td>
</tr>
<tr>
<td></td>
<td>3 100.0 100.0</td>
</tr>
<tr>
<td>Total dissolved salts (TDS) (only 1 level)</td>
<td></td>
</tr>
<tr>
<td>TDS < 1,150 mg l(^{-1}) or electrical conductivity < 1.77 mS cm(^{-1})</td>
<td>TDS not included in licence conditions</td>
</tr>
<tr>
<td>1 NC 94.6</td>
<td></td>
</tr>
<tr>
<td>2 NC 99.6</td>
<td></td>
</tr>
<tr>
<td>3 NC 99.6</td>
<td></td>
</tr>
</tbody>
</table>

NC = not collected; Water quality objective (E. coli or thermotolerant coliforms) and designated uses of recycled water: < 1 CFU/100 ml: dual reticulation for indoor or outdoor use, municipal use with unrestricted access, commercial food crops consumed raw or unprocessed; < 100 CFU/100 ml: municipal use with restricted access and application, commercial food crops with harvesting and irrigation restrictions; < 1,000 CFU/100 ml: municipal use with enhanced restrictions on access and application, landscape irrigation with irrigation and access controls, commercial food crops processed before consumption or with no ground contact; < 10,000 CFU/100 ml: irrigation of non-food crops with restricted access and irrigation controls.

*Not required for current guidelines or discharge licence compliance.

CONCLUSIONS

This study was undertaken using water quality data collected over a five year period to examine the effects of short-term storage at three WWTP sites. The main conclusions derived from this investigation were that:

- significant changes occurred in the chemical and bacterial quality of water, reclaimed from sewage at biological nutrient removal plants, during subsequent short-term storage in open ponds at the treatment plants;
- the majority of the correlations of water quality, with sewage inflow, rainfall or pond influent temperature, were not significant. Temperature was the only factor where a significant trend was apparent, at all three WWTP pond outlets, through a negative correlation with nitrogenous nutrients and a positive one with faecal coliforms.
- the most likely cause of the water quality changes during storage, in this instance, was contamination from avian faeces but further research is required to establish causality.
• faecal coliforms, nutrients and COD increased during surface storage; the magnitude of the increase in faecal coliforms was such that it could limit the guideline uses of the recycled water. The high level of compliance (generally above 95%) with discharge or reuse quality objectives at the pond inlets was reduced across the three WWTPs to 13–60% at the pond outlets
• management of effluent storage at wastewater treatment plants could be enhanced by the integration of monitoring requirements for operational discharge licences with recycling guidelines and by monitoring all water quality parameters, including microbiological ones, at the point of entry into the recycled water distribution system, after storage at the treatment plant, rather than at the end of the treatment process post-disinfection.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the provision of water quality data by the Operations and Maintenance Branch and the Scientific Services Section of Gold Coast Water.

REFERENCES

First received 29 November 2008; accepted in revised form 5 January 2009. Available online July 2009