Indefinite Finsler Type Metrics and Their Peculiar Properties

Hirohisa ISHIKAWA

Department of Physics, Nagoya University
Nagoya 464
January 18, 1979

Usually a Finsler metric tensor is a tensor derived from a given fundamental function \(L(x, y) \) by the equation

\[
\bar{g}_{ij} = g_{ij} - 2n_i n_j \quad (n_i \text{ is a unit vector with respect to } g)
\]

is also the Riemann metric. However this is not the case for Finsler geometry. To discuss this fact we first define the concept “generalized Finsler metric”.

We shall call a symmetric tensor \(g_{ij}(x, y) \) of positively homogeneous of degree zero, i.e., \(g_{ij}(x, ky) = g_{ij}(x, y) \) for any \(k > 0 \), a generalized Finsler metric if \(g_{ij} \) is non-degenerate. Perhaps it will be kind to give the condition for a given \(g_{ij} \) being a usual Finsler metric and the result is as follows:

Let us define a tensor \(C_{ijk} \) correspond-
ing to g_{ij} by the equation

$$2C_{ijk} = g_{ij}b + g_{jk}k - g_{ik}j,$$

then we can prove the following Lemma.

Lemma $g_{ij}(x, y)$ is a usual Finsler metric if $C_{ijk}y^i = C_{ijk}y^k = 0$.

Proof Necessity of the condition follows from a usual equation for the metric given by $L(x, y)$. Sufficiency can be proved as follows. Let us define $F^2(x, y)$ by $g_{ij}(x, y)y^iy^j$, then if the condition of the lemma is satisfied, g_{ij} is precisely the metric derived from $F(x, y)$. q.e.d.

As an application of the lemma we can prove the following theorem.

Theorem If we define an Finsler type metric g_{ij} from a given Finsler metric g_{ij} by the equation

$$g_{ij} = g_{ij} - 2n_in_j,$$

where $n_i(x, y)$ is a contravariant vector with unit length with respect to g^{ij} and degree zero in y, then g_{ij} is a usual Finsler metric if n_i is y-independent.

Proof If we construct the tensor C_{ijk} corresponding to g_{ij}, then it is a straightforward matter to show that if g is a usual Finsler metric, n_i is y-independent. If n_i is y-independent, the given g is a Finsler metric derived from $L - (n_iy^i)^2$ where L is the fundamental function of g. q.e.d.

As an example of the generalized Finsler metric, we consider the following type metric:

$$g_{ij} = LL_i|_j - L_j|_i,$$

where $L(x, y)$ is a given function of degree one in y. This tensor is precisely g_{ij} in (3) for n_i corresponding to the case $n_i = L_i$, so it is not a usual Finsler metric.

The metric g_{ij} given in (4) has the following interesting and important property. By the definition of $g_{ij}(x, y)$, $g_{ij}(x, y)y^iy^j < 0$ for any tangent vector y in M_x (tangent vector space at x), so any vector y is timelike with respect to g_{ij}.

If we define a causal structure by using a curve $x^t(\xi)$ with definite sign tangent vector (for example, $g_{ij}(x, y)y^iy^j < 0$ for any timelike curve), above metric g_{ij} does not have past or does not have future. This kind of property is not peculiar to g_{ij} defined by (4), but also for any non-symmetric Finsler metric, i.e., for the metric such that $g_{ij}(x, -y) = g_{ij}(x, y)$. This kind of future-past non-symmetric causal structure will be appropriate in discussing the beginning of our universe (Big Bang). Details of the causal structure in Finsler space will be discussed elsewhere.

Acknowledgements

The author wishes to express his thanks to Professor Y. Takano for his useful comments and suggestion, and also to H. Matsubara for useful discussion.