An Efficient Low-Rank Separable T-Matrix Formalism and Its Application to the Reid Soft Core Potential

Shinsho ORYU*
Institut für Theoretische Physik der Universität Tübingen
7400 Tübingen, West Germany

May 28, 1979

We will show that an extremely low-rank separable t-matrix can reproduce the 1S_0 and the $^1S_1-^3D_1$-state phase shifts and the mixing parameter of the nucleon-nucleon interaction. The full off-shell scattering amplitudes are compared with current work by Adhikari and Sloan. Our results in rank 2 are comparable with their rank 3 results. In Fig. 1, the off-shell t-matrices at $E=0$ MeV are compared for the off-shell momentum $p'=1.4$ fm$^{-1}$. Figures 2 and 3 illustrate to $^1S_1-^3D_1$ phase shifts and the corresponding mixing parameter, where dashed lines show our rank 1 approximation, dash-dotted lines are our rank 2 approximation by means of Eq. (3·1) of Ref. 2 and solid lines are our rank 3 approximations and the GSE exact rank 1 values. Furthermore, the GSE* exact rank 1 results are better than Adhikari-Sloan rank 2~4 calculations for the $^1S_1-^3D_1$ phase shifts and the mixing parameter.

Our formalism has been described in Refs. 2) and 3), so in this paper we would like to point out the following: The Kowalski-Noyes method then has the defect of a pinching singularity in the negative energy region. This defect does not occur in our formalism. If one extends the Kowalski-Noyes (K-N) method to the negative energy region in the case of the Yukawa potential:

$$V(p,p') = \frac{C}{pp'} Q(\frac{p^2+p'^2+\mu^2}{2pp'}) , \quad (1)$$

then a pinching singularity will appear in the k-plane ($k=\sqrt{mE}$: on-the-energy-shell momentum) at $p=0$ and $k=i\mu$.

Proof
The logarithmic cuts of Eq. (1) are given by

$$p'^2+p'^2+\mu^2=2pp't \cdot (\frac{1}{t}) \quad (2)$$

Since the K-N method takes

* On leave from Department of Physics, Science University of Tokyo.

* Abbreviation to generalized separable expansion.
as the separable potential, the cuts of $V(p, k)$ are given by using Eq. (2) by

$$V(p, k) V(k, p') = V(k, k)$$

(3)

This is illustrated in Fig. 4 by the solid lines \overline{PQ} (for $p=0$), \bar{B}_1C_1 (for $p=\mu/2$), \bar{B}_2C_2 ($p=\mu$), \bar{B}_3C_3 ($p=3\mu/2$) and so on. Furthermore, $V(k, k)$ has the so-called left hand cuts (shown in Fig. 4 by cross-hatched lines) from $i\mu/2$ to $i\infty$ and from $-i\mu/2$ to $-i\infty$. Therefore, the logarithmic cuts \overline{PQ} pinch the left hand cuts at $k=i\mu$ and $p=0$. In the three-body case, this difficulty becomes clearer and is unavoidable. The two dashed lines $s\to0\to a$ and $s\to0\to b$ illustrate conventional integral contours in the three-body Faddeev calcula-
lation. Each suffers from a pinching or a cut.

In our formalism, however, \(k \) in Eq. (3) is replaced by a parameter \(k_1 \geq 0 \), and no difficulty appears. For convenience, the first \((k_1) \), the second \((k_2) \) and the third \((k_3) \) parameters are given in the Table for the \(^1S_0 \)-state of the Reid soft core potential.

The author would like to thank Professor E. Schmid for his kind hospitality in the Institute of Theoretical Physics of Tübingen University.