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Suspended sediment transport in river for a particular period is a timescale finite population.

This population shows natural aggregation tendencies in sediment concentration particularly

during floods. Adaptive cluster sampling (ACS) can be potentially conducted for sampling from

this rare clustered population and estimating total load. To illustrate the performance of ACS in

sediment estimation, a comparative study was carried out in the Gorgan-Rood River, Iran, with

around a 5 year daily concentration record. The total sediment loads estimated by ACS were

statistically compared to the observed load, estimations of selection at list time (SALT) and

conventional sediment rating curve with and without correction factors. The results suggest that

none of the sediment rating curves produced accurate estimates, while both ACS and SALT

showed satisfactory results at a semi-weekly sampling frequency. The best estimation obtained

by the rating curves did not show a percent error better than 240%; however, ACS and SALT

underestimated the load at less than 5%. The results of this study suggest ACS could improve

river monitoring programs.

Key words | adaptive cluster sampling, Gorgan-Rood River, sediment rating curve, selection at list

time, suspended sediment load

INTRODUCTION

Sediment transport in a river system and its deposition

thereafter are two significant offsite effects of erosion from

an upstream basin. Suspended sediment also carries various

chemicals and pollutants that are transported into down-

stream water bodies. Most development projects in river

basins need estimates of sediment output. Accurate esti-

mation of suspended sediment yield has been a continuous

challenge during recent decades.

Wash load usually constitutes the greatest part of

suspended sediment in rivers. The amount of transported

fine wash load particles is not sensitive to flow parameters

(Vanoni 1975). Hence, it is often modelled using empirical

relations (Asselman 2000) such as conventional sediment

rating curve (CSRC). The existing gaps in sediment sample

record have made CSRC an ordinary method for estimating

missing values (Lai et al. 1995).

According to several studies, CSRCs most often signifi-

cantly underestimate the long-term sediment transport rates

as much by 50–60% or even more (Thomas 1985, 1988;

Ferguson 1986; Koch & Smillie 1986; Walling & Webb 1988;

Cohn et al. 1989; Asselman 2000; Cohn 2005).

Based on statistical considerations, Duan (1983) and

Miller (1984) suggested that logarithmic transformation is

the main cause of underestimation by regression models

and recommended two widely used parametric and non-

parametric correction factors (PCF and NPCF) to balance

the bias. Ferguson (1986) reported satisfactory outcome of

applying PCF to CSRC. In a follow-up paper, Koch &

Smillie (1986) successfully applied NPCF to their sediment

dataset. The application of these correction factors in many

experiments was not very encouraging (Thomas 1985, 1988;

Walling & Webb 1988; Crowder et al. 2007; Sadeghi et al.
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2008). The use of these correction factors could not entirely

balance the existing bias and only improve the estimated

load. This led some authors to claim that the bias associated

with logarithmic transformation is not the prime cause of

sediment rating curve inaccuracy (Walling & Webb 1988).

Bias occurs as a consequence of higher samples taken

during low flows, in contrast to the lower samples taken

during high flows when most sediment is exported.

Extrapolation of sediment concentrations from sedi-

ment rating curves for flood flows also introduces uncer-

tainties in load estimations. Both problems are due to the

non-representativeness of sample sets. In this regard,

Schleppi et al. (2006) suggested that the best way to obtain

accurate and precise flux estimates is through probability

sampling proportional to discharge.

A group of researchers have, however, suggested the use

of non-linear regression in developing sediment rating

curves (Horowitz 2003; Demissie et al. 2004; Schmidt &

Morche 2006; Crowder et al. 2007; Sadeghi et al. 2008).

Typically, the main shortcoming of the non-linear model is

that residual errors are not identically distributed through-

out the range of stream flow values. In addition, Thomas

(1985) argued that the sediment rating curve could be

termed non-statistical as sampling probabilities are not

known; the estimators, therefore, cannot consider the

probability structure, resulting in bias.

Survey sampling

In response to the shortcomings of sediment rating curve,

the use of survey sampling for river sediment monitoring

and estimating total suspended sediment were introduced

in the 1980 s. Survey sampling includes two parts: first, a

sampling design describes the time schedule of sampling

for river sediment studies and the second, the estimators,

is used to estimate total load and its variance. These

estimators are only relevant with the corresponding

sampling designs and cannot be used with another

sampling design.

Accurate estimates of total sediment load were reported

by applying unequal probability survey sampling, including

selection at list time (SALT) (Thomas 1985), time-stratified

sampling (Thomas & Lewis 1993) and flow-stratified

sampling (Thomas & Lewis 1995). Stratified sampling was

mostly used for the estimation of transported loads during

storm hydrographs. Nevertheless, the SALT, which is a

probability proportional to size sampling design, was also

employed in the sampling of storm hydrographs and longer

periods (up to several years). These sampling techniques

were considered by Cohn (1995) as important innovations in

estimating sediment transport from small watersheds. He

recommended their uses in basins where the sediment

rating curve is not valid. These procedures are only

meaningful in basins instrumented with programmable

sediment samplers.

In spite of an obvious preference for survey sampling in

producing unbiased sediment estimates, little attention has

been paid to this method by the recent literature. The reason

most likely relates to the difficulty and complexity of their

use in sediment load estimation. In addition, these

techniques are only relevant in a small number of basins

equipped with a pumping sampler set. Most water quality

monitoring programs, however, are carried out without the

use of automatic samplers, as manual sampling is a common

feature in majority of rivers (Degens & Donohue 2002).

Adaptive cluster sampling

One possibility of overcoming the problem of ill-equipped

sediment stations discussed earlier is the use of adaptive

cluster sampling (ACS) in collecting river water samples for

sediment estimation where automatic samplers are not

available. Thompson (1990) introduced this method in

investigating rare clustered populations strictly in the

statistical sense, but its application in specific problems

such as forestry (Acharya et al. 2000; Talvitie et al. 2006),

soil (Juang et al. 2005), social issues (Chaudhuri et al. 2005)

and fishery (Bradbury 2000; Harris 2008) has been widely

used during the last decade.

In a rare clustered population, the study variable in

most sampling units is zero or negligible. However, it is

substantial in the other sampling units (referred to as

important units) because of heavy localization of the high

valued units in certain parts. The main concept used in ACS

is taking more samples from important units based on a

neighbourhood relation.

Sediment transport is typical of a rare timescale

clustered population. A study period can be divided into
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N equal time intervals with almost constant discharge and

sediment concentration in each period. Each time interval

is a sampling unit. Sampling units with high sediment

concentration show aggregation tendency and coincide

mostly with flood events. For example, Walling (1994)

reported that 95% of sediment load is carried over only 5%

of the time and is negligible at other times for the Creedy

basin in the UK. This means that there is natural clustering

in sediment concentration populations particularly during

floods. Markus & Demissie (2006) also reported that of 27

basins studied in the USA, 68% of the annual loads were

transported by four highest floods each year.

Since ACS is new to the hydrological sciences, a basic

form is briefly described using an illustrative example

(Figure 1) to understand its context. In ACS, samples are

taken in two steps. It also requires a threshold or boundary

to determine important sampling units. First, an initial

sample set (units shaded black in Figure 1) is taken. If

the measured variable for an initial selected unit is equal

to or exceeds the threshold (here assumed to be 25) then,

as shown in Figure 1, the adjacent right and left units

(symmetric relation) are taken in the next steps (shaded

grey), until the study variable becomes less than the

threshold. A set of samples including an initial sampled

unit and all other related observed units is called a cluster.

An edge unit is the observed neighbourhood of a previous

selected unit that does not satisfy the condition. All units in

a cluster without the edge units is termed a network of size

xk. Consequently, a final sample set is formed which

constitutes the initial sample set together with all additional

selected samples in the networks.

As stressed earlier, the sediment concentration

population is a timescale population. For that reason, the

classic ACS with symmetric neighbourhood relation (two

sides) cannot be employed since the person in charge

cannot sample those occurred events during the previous

time intervals. Therefore, an altered forward neighbourhood

relation (one side) was adapted in the current study instead.

Sampling with a symmetric neighbourhood relation was

reported to be unpractical in some cases or even impossible

by some authors, who then suggested some remedies for

their cases (Lo et al. 1997; Salehi & Smith 2005).

This paper describes the use of ACS design for the

monitoring of suspended sediment to estimate total sediment

load in rivers. In addition, comparisons are made between

this method and four existing sediment load estimation

approaches.

STUDY AREA AND AVAILABLE DATA

This study was performed in the Gorgan-Rood River at the

Ghazaghly gauging site, located upstream of the Voshmgir

dam, Golestan Province, Iran. This 7,062 km2 river basin,

situated in the north of Iran, originates from the Alborz

Mountain and drains an average annual discharge of

12m3 s21 into the Caspian Sea. The maximum precipitation

in the mountainous area occurs in winter; however it occurs

in late summer and early autumn in the lowlands. Loess

without good vegetation covers the lower part of the basin

and provides lots of sediment to the river system, particu-

larly during summer rainstorms.

Figure 1 | Adaptive cluster sampling in a small string population.
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The available data includes 1686 coincident discharge

and concentration measurements conducted by the

Ministry of Energy, Iran, from 1982 to 1987. Sampling was

carried out every day. The daily mean discharge and a few

hundred sediment concentration records are also available

from 1973 to 1981. The maximum observed discharge is

more than 200m3 s21; however, the river may be almost dry

for several days in summer every year. The sediment

concentration during summer storms is usually high and,

after the dry periods, may even exceed 50 gL21. The greatest

observed daily load occurred after a short summer rain-

storm (with a discharge of 32.5m3 s21) in August 1986 and

transferred 0.92 £ 106 tonnes of suspended sediment. The

smallest daily load for the same discharge during the study

period was only about 5,000 tonnes per day, which

occurred in April 1986. In comparison, the transported

daily load by the maximum observed discharge is 147,000

tonnes and the minimum observed daily load was as low as

0.01 tonne. The total recorded load during the study period

was 12.54 £ 106 tonnes. Although the data are not recent, it

is the best available sediment concentration record in Iran.

Data analysis

Sampling designs

In this study, three designs were used to extract sample sets:

(1) ACS; (2) calendar-based and (3) SALT. Code written

using MATLAB facilitated the simulation of samplings.

1. Adaptive sampling: For field sampling of the proposed

ACS with a forward neighbourhood relation, a time

schedule and a predetermined discharge threshold are

required. The person in charge must visit the gauging site

in accordance with the time schedule, take the sediment

sample and record the instantaneous discharge. When

the observed discharge exceeds the predetermined dis-

charge threshold, he/she will take a sequence of samples

in the subsequent time intervals until the instantaneous

discharge drops below the threshold. Otherwise, the

person will have to take the next sample according to the

time schedule. Using the forward neighbourhood

relation, he/she loses the sampling units before the

initial chosen units (e.g. 20th day in Figure 1). With this

method, no edge units are sampled because an auxiliary

variable is used (e.g. days 10, 12, 19 and 31 in Figure 1).

We simulated the above ACS design by running

MATLAB code for three initial sample sizes including

100, 200 and 400. It is noted that fixed-interval time

schedules were used for selecting initial sample sets. Due

to non-integer intervals, the real time intervals were not

exactly equal for all units in the sample sets, causing one

day variation between some consequent samples. The

initial sample sets, therefore, were considered simple

random sample sets.

Choosing an appropriate threshold by ranking the

values of all initial samples was suggested in spatial-scale

studies (Thompson 1996). This method is not possible in

river sediment studies as discharges during following

days, which are timescale based, are not known. This

study has made use of the monthly flow duration curves

using previous daily discharge records from 1973 to 1981

to define the threshold. The boundary between high and

low flows (Table 1) was considered to be that which

exceeded the flow 20% of the time within each month.

These boundaries effectively separated high-load periods.

Dickinson (1981) and Richards & Holloway (1987)

suggested a daily flow which exceeds flow 15% and 20%

of the year, respectively, for dividing high and low

discharges. Table 2 shows the size of final sample sets

taken by ACS for the three sampling frequencies.

2. Calendar-based sampling: For each sample size, an

average time interval was calculated. The first sample

was chosen randomly between one and the average time

interval. The subsequent samples were then selected

based on the fixed average time interval. By adding a very

small random number (between ^0.05) to time interval,

we avoided taking the same sample sets for different

replicates, even with the same first sample.

3. Selection at list time: Sampling simulation using the

SALT design was adopted from Thomas (1985). In this

study, we fitted a rating curve to the sediment and

discharge records from 1973 to 1981 prior to the

duration of the study:

ðQs ¼ 24:9 £Q1:51
w Þ;

where Qs and Qw are sediment load (tonne day21) and

discharge (m3 s21), respectively. This rating equation was
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employed to make a preliminary estimate of the total

sediment load, Z0, expected during the period to be

monitored. It was completed by estimating total sedi-

ment load for 1686 comparable days during the 5-year

period of 1976–1981. Then Z0 was multiplied by a safety

factor, W, to obtain a possible upper limit of sediment

load in study period, Y*:

Z* ¼ WZ0: ð1Þ

With this procedure, Z* became sufficiently high to

ensure that the real-time estimated sediment load using

CSRC does not exceed Z*. According to the suggestion of

Thomas (1985), we chose W ¼ 10 in this study because of

the high sediment load variability expected in arid and

semi-arid areas.

A column of cumulative loads was computed for the

study period (obtained from the CSRC). For each

simulation, a set of random numbers size n* was

generated between 1 and Z* and sorted in ascending

order. The method used to calculate n* is described in

Thomas (1985). The days on which the random numbers

fall within the corresponding cumulative load values

were selected as sampling units. Sometimes more than

one random number fell within a day. Table 2 shows the

size of selected sample sets by SALT.

As shown in Table 2, the average numbers of sample

sets of three sampling frequencies (of 50 replicates) are

about 120, 230 and 440. These sample sizes are labelled as

small, medium and large based on their magnitudes, to

prevent repetition using the values. The chosen average

sampling frequencies were approximately twice a month,

once and twice a week. Table 2 shows that the number

of records is not fixed among replicates selected by ACS

and SALT.

Suspended sediment load estimating methods

Total sediment outputs for the study period were estimated

with the following sediment estimation methods: (1) the

modifiedHorvitz-Thompson estimator for ACS; (2)Hansen-

Hurwitz estimator for SALT; and (3) CSRC, PCF and NPCF

for calendar-based sample sets.

1. Modified Horvitz-Thompson estimator (ACS estimator):

Two estimators have been suggested for ACS by

Thompson (1992). In this study, only the modified

Horvitz-Thompson estimator was used because of its

better performance (Salehi 2003). Since ACS is an

unequal probability sampling, we need to calculate the

probability first. As stated earlier, the initial sample sets

were considered simple random samples. For a random

initial sample set without replacement, assuming xk is the

number of units in the kth network, the probabilities of

intersecting initial samples and networks are calculated

from (Thompson 1992):

ak ¼ 12 ðN2xk
n Þ=ðNn Þ: ð2Þ

The unbiased total sediment load is calculated by the

modified Horvitz-Thompson estimator:

ŶACS ¼
Xk

k¼1

y*kzk
ak

ð3Þ

Table 1 | Average daily discharges (m3 s21) exceeded 20% of the time each month, based on a 9-year record before the study period

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

15.0 20.9 38.2 71.8 49.7 22.5 8.1 2.0 3.9 9.0 9.5 13.0

Table 2 | Size of sample sets taken by three sampling designs for three sampling frequencies

Sampling design Adaptive cluster sampling (ACS)p Selection at list time (SALT)

Sample size class Small Medium Large Small Medium Large

Size of sample set (50 replicates) Minimum 109 217 427 107 207 417

Maximum 136 242 455 130 246 464

Average 117.9 227.6 440.1 118.6 228.3 440.5

pCalendar-based sample sets were chosen with the same sizes as those average numbers obtained for corresponding adaptive sample sets.

67 M. Arabkhedri et al. | Adaptive sampling for sediment load Hydrology Research | 41.1 | 2010

Downloaded from http://iwaponline.com/hr/article-pdf/41/1/63/372542/63.pdf
by guest
on 29 November 2020



where ŶACS is estimator of total sediment load for ACS,

k is the total number of distinct networks in the

population and y*k is the total of y values in network k.

For every network with one unit, y*k ¼ y and zk is an

indicator equal to 1 if any unit of the kth network is in

the initial sample and equal to 0 otherwise.

2. Hansen-Hurwitz estimator (SALT estimator): First an

estimate of sediment load, xi, was obtained for discharge

of each sampled unit using the available CSRC

(explained earlier). The total estimated sediment load,

X, was calculated by summing every estimated xi. As

SALT is an unequal probability sampling, we also need

to find the probability (pi) for each sampled unit.

Assuming pi ¼ xi/X, then ŶSALT (the SALT estimate of

total sediment load) can be obtained by the Hansen-

Hurwitz estimator (Thomas 1985):

ŶSALT ¼
1

n

XN

i¼1

ri
yi
pi

; ð4Þ

where yi is the observed load during the study and ri is

the number of random values contained in the ith

interval. The sample size n is given by

n ¼
XN

i¼1

ri: ð5Þ

3. Sediment rating curves: Only calendar-based sample sets

were used to estimate total sediment load with CSRC. To

develop a CSRC, first, for each sample set, sediment load

(dependent) and discharge (independent) variables were

transformed to logarithm base 10. Then a linear rating

curve was fitted to the data, using a least square

technique. Coefficient of determination (R 2) and stan-

dard error were used to evaluate each rating curve. This

equation was employed to estimate the missing daily

sediment loads using daily discharge and then total

sediment load for the study period.

Equations (6) and (7) below calculate PCF and NPCF.

For calculating corrected estimates of sediment load,

obtained correction factors then were multiplied by

CSRC estimates:

PCF ¼ 101:1513s2
c : ð6Þ

and

NPCF ¼ 1=n
Xn

i¼1

expðêiÞ; ð7Þ

where s2
c is the variance of the residuals from the

regression relationship between load and flow (mean

square error) in base-10 logarithms and êi denotes the ith

of n regression residuals between load and flow.

Estimation approaches, treatments and their comparison

Each estimation approach comprises two parts: sampling

design and estimation method or estimator. As mentioned

earlier, for survey sampling approaches such as SALT, each

sampling design has a specific estimator. However, sedi-

ment rating curves can also be applied to calendar-based,

ACS or SALT sample sets. We employed five estimation

approaches in this study, as listed in Table 3. To avoid using

long designations, a short name was considered for each

approach.

Since sampling designs were simulated with three

predetermined sizes of sample sets (110, 230 and 440),

each estimation approach included three subgroups with

respect to sampling frequency that were essentially the

treatments. Each treatment comprised 50 replicates, which

produced 750 separate estimations overall.

To compare different approaches and treatments, a

number of statistics were calculated. Percent error was

obtained for each estimated load to indicate over and

underestimations. Average percent errors were also calcu-

lated to compare treatments to determine if they were

Table 3 | Sediment estimation approaches used in this study

Estimation approach: Sampling design and

estimation method Acronym

Adaptive cluster sampling (ACS) design
and ACS estimator

ACS

Selection at list time (SALT)
design and SALT estimator

SALT

Calendar-based sampling design and conventional
sediment rating curve (CSRC)

CSRC

Calendar-based sampling design and parametric
correction factor (PCF)

PCF

Calendar-based sampling design and non-parametric
correction factor (NPCF)

NPCF
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unbiased. A treatment is considered unbiased if the average

percent error approaches zero.

The variance of replicates V½Ŷ� and coefficient of

variation (CV) were calculated to study the precision of

different estimation treatments. The most precise treatment

shows a very small amount of variance; the CV illustrates

that the replicates estimate considerably close loads.

Finally, to decide which treatment works better, the

normalized root mean square deviation NRMSD½Ŷ� was

obtained:

NRMSD½Ŷ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½Ŷ� þ ðBias½Ŷ�Þ2=Y

q
: ð8Þ

where Bias½Q̂s� is calculated:

Bias½Ŷ� ¼

P50
i¼1Q̂s

50
2Qs; ð9Þ

where Q̂s and Qs in Equation (9) are the estimated and

observed total sediment load, respectively. The smallest

NRMSD½Ŷ� denotes the most accurate treatment.

RESULTS

The results, including mean estimated load, standard

deviation, CV, percentage of error for maximum, minimum

and mean estimates and NRMSD are shown in Table 4. The

comparison of ACS and SALT with respect to the mean

error shows that ACS always slightly underestimates the

mean load by 215% to 24%, while the estimates of SALT

are almost unbiased with mean errors ranging from 27% to

þ2.2%. The two approaches provide a similar percent error

for the large sample size. The two survey sampling

approaches also produce almost similar results with regard

to the range of percent errors. While percent errors of

individual estimates for large sample sets of SALT vary from

228 to þ35, ACS shows narrower ranges. The largest error

for SALT exceeds 100% compared to 65% for ACS.

Use of the CSRC, however, drastically underestimates

the sediment load by more than 71%. The mean esti-

mations for CSRC treatments are almost constant at about

3 million tonnes, approximately one-quarter of the

observed load. Application of the two correction factors

Table 4 | Mean estimated loads for study approaches with some corresponding descriptive statistics

% Error for estimations

Estimation Approach Mean estimated load (t) Standard deviation (t) Coefficient of variation (%) Maximum Minimum Mean NRMSD

Small sample size ¼ 120

ACS 10,630,179 4,020,785 37.8 65.3 258.0 215.3 0.35

SALT 11,574,591 3,015,862 26.1 60.1 243.4 27.7 0.25

CSRC 2,993,263 271,232 9.1 270.9 280.0 276.1 0.76

PCF 7,631,879 816,759 10.7 225.5 253.6 239.2 0.40

NPCF 19,642,455 8,158,387 41.5 243.7 247.1 56.6 0.86

Medium sample size ¼ 230

ACS 11,117,111 2,825,871 25.4 53.6 244.0 211.4 0.25

SALT 12,822,539 3,461,289 27.0 98.1 235.9 2.2 0.28

CSRC 2,962,293 97,028 3.3 274.4 278.6 276.4 0.76

PCF 7,509,623 604,973 8.1 232.7 250.4 240.1 0.40

NPCF 21,508,511 7,029,676 32.7 173.0 221.2 71.5 0.91

Large sample size ¼ 440

ACS 11,952,291 1,307,695 10.9 13.2 227.0 24.7 0.11

SALT 12,035,096 1,605,437 13.3 35.2 228.1 24.1 0.13

CSRC 2,982,137 60,568 2.0 275.4 277.3 276.2 0.76

PCF 7,530,822 283,010 3.8 235.2 244.7 240.0 0.40

NPCF 20,473,038 2,816,191 13.8 105.2 25.0 63.2 0.67
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yields contradictory results. The average biases for PCF

treatments are about 240%, demonstrating about 30%

improvement compared to CSRC. However, the average

biases for NPCF treatments show large overestimations of

more than 56%. Despite these overestimations, the percent

errors of NPCF individual estimates have too many

fluctuations, sometimes even becoming negative. PCF

does not produce any estimates greater than the observed

load, indicating a systematic underestimation as for CSRC.

It can be seen from the data in Table 4 that the best

individual estimate for PCF has a 225% error.

From Table 4, strong evidence of positive correlation

between standard deviation and average estimated load can

be understood. That is, estimation treatments with large

mean estimated loads report much more variation and a

wide range of estimations. Standard deviations and CVs of

both survey sampling approaches are less than NPCF only,

but greater than the two other sediment rating curve

approaches. ACS shows a fairly reasonable standard

deviation with the large sample sets. Its CVs, however,

vary from 11% for large sample size to 39% for smaller

sample sizes. The calculated CVs for the medium and large

sample sizes treatments of ACS are smaller than the

analogous values of SALT. For the small size, however,

ACS produced a larger CV.

Comparing ACS and SALT using NRMSD yields similar

results as the CV. For the medium and large sample sizes,

ACS shows smaller values (0.25 and 0.11) compared to the

SALT. The NRMSD of SALT for the small to large sample

sets ranges from 0.28 to 0.13, respectively.

Table 4 indicates that CVs of three CSRC treatments

range from 2–9%. These values are very low compared to

other treatments. Despite precise results, the amounts of

NRMSDs range from 0.69 to 0.76 demonstrating the second

lowest accuracy. Using normal distribution rules, it is

statistically predicted that at least 99.9% of all possible

estimates of CSRC would be less than one-third of the

observed load, revealing that it cannot provide any estimates

in Gorgan-Rood with an error less than 269%.

Regardless of the large improvement of PCF on percent

error compared to the CSRC, its variance is a little higher

than the latter. The highest CV of PCF estimates is about

11%, which occurs for the small sample set. It gradually

drops to 4% for large sample sizes. This correction factor

also substantially improves the accuracy (NRMSD ¼ 0.40)

compared to the analogous value for CSRC (0.76).

The CV and NRMSD of NPCF are almost greater than

other study estimation approaches. The highest estimate is

more than twice that of the observed load. However, the

smallest estimate shows 21% underestimation. Overall, the

NPCF did not improve the CSRC estimates in Gorgan-

Rood, since it has produced almost the same amount of bias

(only positive).

Table 4 also shows the relationship between sample size

and calculated statistics. For example, from the data in this

table, it is apparent that sample size does not affect NRMSD

in the case of CSRC and PCF. However, for ACS, there is a

significant negative correlation between these two para-

meters i.e. NRMSD decreases with increasing sample size.

SALT and NPCF, in comparison, show the lowest accu-

racies for the medium sample size.

The better performance of survey sampling compared to

the sediment rating curve approaches can easily be seen in

the results presented in Table 5. While none of the CSRC

estimations demonstrate a percent error less than 50%,

all estimates of PCF yield errors of between 30–50%.

Table 5 | Percent of estimates placed in the range of different percent errors

Estimation approach CSRC PCF NPCF SALT ACS

Sample size 120 230 440 120 230 440 120 230 440 120 230 440 120 230 440

Percent error , j50j 0 0 0 96 98 100 54 44 34 98 94 100 88 100 100

, j40j 0 0 0 58 50 48 52 38 26 94 90 100 62 94 100

, j30j 0 0 0 4 0 0 38 22 4 70 82 98 40 64 100

, j20j 0 0 0 0 0 0 32 14 0 46 60 86 22 40 92

, j10j 0 0 0 0 0 0 16 8 0 24 28 46 8 14 54

, j5j 0 0 0 0 0 0 8 2 0 8 8 16 4 2 30
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In comparison, NPCF shows a relatively uniform

distribution of estimation errors in different categories, but

34–54% of estimates are classified in .50% error category

(Table 5). Surprisingly in the case of NPCF, the increasing

sample size has an inverse effect on the accuracy. All

estimations made by ACS and SALT with the large sample

sets fall within the class of less than 30% and 40%. This

table shows the superiority of SALT for the small sample

sets, but ACS performed better for large sample sets.

DISCUSSION

The results showed that the mean estimates obtained by

ACS and SALT were comparatively close to the observed

value; the sediment rating curve approaches produced

substantial under or overestimations, however. These

findings are expected, because both designs are inherently

unbiased. Nevertheless, ACS showed a tendency to under-

estimate the sediment load. The underestimation was most

probably a result of the missing important sampling units

taken during the first halves of the storm hydrographs by the

forward neighbourhood relation (compared to the sym-

metric procedure). It is noted that in basins with a

clockwise hysteresis loop, a higher rate of sediment loads

are transported during the rising limbs and the peaks

(Gomi et al. 2005), which coincide with the first halves of

storm hydrographs.

As indicated in Table 4, the underestimation with the

adopted ACS is greater when the sample size became

smaller. The reason for this underestimation is explained in

the example shown in Figure 2. When the sampling interval

is weekly, the high flow part (greater than the discharge

threshold) of storm hydrograph is intersected at days 9, 16

and 23. Additional samples with forward neighbourhood

relation will therefore be taken from day 9 to 25. For the

biweekly interval, however, the high flow part is only

intersected at day 16, which leads to an additional 9 days of

samples from day 16 to 25. Using the sediment graph in

Figure 2, it is apparent that the majority of the load occurred

before day 16 and a very low amount at the end part of the

storm hydrograph. In other words, the chance of taking

additional samples from the first parts of storm hydrographs

increases when the sample size increases. Choosing more

additional samples during the first part of storm hydro-

graphs will eventually lead to a smaller amount of under-

estimation. In Gorgan-Rood, the average underestimation

was negligible when about a quarter of the population had

been sampled.

The results also indicated a very high CV for the ACS

with the small sample sets, which can be explained by

considering the nature of flow and sediment load duration

curves in the Gorgan-Rood. Figure 3 reveals that 45% of the

load has been carried only during 1% of time. By neglecting

the sample from this period, ACS would almost be changed

to a calendar-based sampling with relatively high CV. The

high CV value for small sample size is in agreement with

Thompson (1992) who showed by example that the variance

of estimations obtained by the modified Horvitz-Thompson

Figure 2 | The effect of initial sampling frequencies (weekly and biweekly) on the

number of intersections during storm hydrograph and associated additional

samples.

Figure 3 | Cumulative percentage of stream flow and sediment load duration curves

in Gorgan-Rood River, Iran.
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estimator exceeds two-thirds of the analogous value for

simple random sampling when the size of sample sets are

less than 10% of population. However, this ratio is less than

1/15 for very large sample sets (equal to 50% of the

population size).

Despite the good results of SALT in this study, the

outcomes are not as encouraging as the two previous

studies carried out by Thomas (1985) and Thomas & Lewis

(1993). There are several possible explanations for contra-

dictory findings. First, in choosing a representative sample

set, SALT needs an appropriate auxiliary variable highly

correlated with concentration (Thomas & Lewis 1993).

However, the correlation between concentration and the

only available auxiliary continuous record (discharge) was

very poor (less than 10%). It is difficult to model sediment

load estimation in rivers such as Gorgan-Rood which have

sophisticated variations in daily load level, as explained

before. Good results in previous studies can be explained by

their analyzed datasets. Thomas (1985) used sediment

records synthesized using CSRC for two years (not true

records), and the dataset of Thomas & Lewis (1993)

involved only five storm events.

CONCLUSION

ACS is able to produce relatively accurate sediment load

estimation as well as SALT but much better than rating

curve approaches in the Gorgan-Rood when the sample

size is large enough. The most significant advantage of

SALT and ACS designs compared to the calendar-based

method is that the two former designs select more samples

during high flows. Another important advantage of survey

sampling approaches compared to the sediment rating

curves is that the former gives a valid estimate of variance

of the estimated total loads, therefore provides an estimate

of the error present in estimating total suspended sediment

load. Although both ACS and SALT take more samples

during high flows, the use of SALT is restricted in most

rivers where the gauging site is not equipped with an

automatic sediment sampler.

Despite the better accuracy of ACS compared to other

estimation approaches, this study showed that it consider-

ably underestimated the sediment load in Gorgan-Rood

when the sample size is less than 15% of the population.

In other words, the adopted ACS with forward neighbour-

hood relation is inherently biased because of several

unsampled units during the rising limbs of storm hydro-

graphs. As discussed earlier, this bias can be largely

eliminated by taking large samples. Developing an unbiased

estimator by considering the nature of storm hydrographs

and sediment graphs may be a necessary next step for

further studies.

Testing of this method in a variety of conditions is

suggested. It is expected that ACS will yield more accurate

load estimation for rivers with fairly long storm hydro-

graphs. In such rivers, there would be a greater chance to

take samples from all events, which leads to relatively

unbiased estimates with smaller variations.
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