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In a recent paper, the authors consider the dynamics o
n-degree-of-freedom linear system represented by

Mÿ~ t !1Dẏ~ t !1Ky~ t !5 f ~ t !, y~0!5y0 , ẏ~0!5 ẏ0 , (1)

for all t>0, where the vector of displacementsy(t)PRn and the
vector of applied forcesf (t)PRn. They obtain upper bounds o
the norms of responses of the system~1! for the cases of free and
forced vibration.

The authors obtain an upper bound oniy(t)iª@y(t)Ty(t)#1/2

for all t>0. Although, it is useful to know the time evolution o
an upper bound on the functiont°iy(t)i , it is more important to
have a tight upper bound on

iyiªmax
t>0

iy~ t !i , (2)

which is an indication of the largest displacement~strain! of the
system~1!. A tight bound upper bound oniyi, which is desirable
for the worst-case scenario studies, results in less conserv
designs.

The authors write that@1# ‘‘In comparison to the respons
bounds available in the literature, the ones presented here ar
only closer to the exact responses, but are also simpler to c
pute.’’ This statement is evaluated in the following discussion

According to @1#, an upper bound oniyi for the case of free
vibration is obtained as follows:
~i! Compute

D* 5M 21/2DM 21/2, K* 5M 21/2KM 21/2. (3)

~ii ! Compute

m55
lmin~D* !/2, for lmax

2 ~D* !<4lmin~K* !,

minH 1

2
~lmax~D* !2Almax

2 ~D* !24lmin~K* !!,

1

2
lmin~D* !J otherwise.

(4)

~iii ! Compute

D85D22mM , K85K2mD1m2M , (5)

E05
1

2
ẏ0

TMẏ01
1

2
y0

TKy0 , (6a)

E0* 5E01m2y0
TMy01my0

TMẏ02my0
TDy0/2. (6b)
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~iv! An upper bound oniyi is

iyi<min$A2lmin
21~K !E0,A2lmin

21~K8!E0* %. (7)

The computation of the upper bound in~7! via steps~i!–~iv! is
not as easy as that of some bounds in the literature. For insta
according to Shahruz and Mahavamana@2# an upper bound oniyi,
when the matrixDM 21K1KM 21D is positive definite~such as
in classically damped systems!, is

iyi<~@lmax~M !/lmin~M !#~y0
Ty01 ẏ0

Tẏ0 /v1
2!!1/2, (8)

wherev1 is the smallest undamped natural frequency of the s
tem ~1!. It is evident that the computation of the upper bound
~8! is much simpler than that in~7! via steps~i!–~iv!.

Now, it is determined how conservative the upper bounds in~7!
and ~8! are. In @1#, the system~1! with the following coefficient
matrices is considered:

M5F1 0

0 1G , K5F 5 21

21 1 G , D5~M1K !/2. (9)

For different initial conditions the following upper bounds a
obtained:
~B1! y1(0)51, y2(0)50, ẏ1(0)5 ẏ2(0)50:

From numerical simulation: iyi51, (10a)
According to ~7!: iyi<2.51, (10b)

According to ~8!: iyi<1. (10c)

~B2! y1(0)50, y2(0)51, ẏ1(0)5 ẏ2(0)50:

From numerical simulation: iyi51, (11a)
According to ~7!: iyi<1.15, (11b)

According to ~8!: iyi<1. (11c)

Results in~10! and~11! show that the upper bounds computed
~7! aremuch moreconservative than those obtained by~8!.

Next, upper bounds are computed for another system wh
coefficient matrices are given in~92! of @1#. For the coefficient
j50.1 ~see@1# for details!, y05@0 0 0 0#T, andẏ05@1 1 1 1#T, it
is concluded that

From numerical simulation: iyi51.64, (12a)
According to ~7!: iyi<4.14, (12b)
According to ~8!: iyi<4.11. (12c)

This example shows that both~7! and~8! yield conservative upper
bounds oniyi , even though~8! resulted in a tight bound for the
system whose coefficients matrices are given in~9!.

In summary, it is shown that the upper bounds on response
the system~1! derived in@1# are neither easily computable nor a
tight, as it is evident from~10! and~11!. Also, it is shown that no
upper bound can be expected to be tight for all systems, as
apparent from~12!.
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with their results was not possible~and maybe not even reason
able since in our paper we discussed mainly response bounds
time evolution and not amplitude bounds!.

In conclusion, we agree with Mr. Shahruz that no upper bou
can be expected to be tight for all systems. In fact, in our paper
also stated that K. Yae and D. Inman’s response bounds give
paper~@5#! are in some cases better than ours. But in contrary
Mr. Shahruz we think that improvements on theresponse bounds
are meaningful and do not consider only theamplitude boundsto
be important. Mr. Shahruz stated that our response bounds
neither easily computable nor are tight. We hope that we h
been able to contribute to this interesting field of research and
in the future more easily computable and tighter response bou
will be developed.
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The authors gave an energy method to analyze the magn
elastic buckling and bending of ferromagnetic plates in differ
static magnetic fields. The elastic strain energy of Eq.~2! em-
ployed in this paper is for the bending of the beam-type plate. A
in the derivation of magnetic energy of Eq.~5!, the effect of end
edges on magnetic fields is not taken into account. After the l
gitudinal and transverse demagnetizing factorNl andNh are cal-
culated by Eqs.~12!–~13!, respectively, the expressions of critic
field Bcr and bending deformationd at free end are formulated b
Eqs. ~14! and ~17!, respectively. In this approach, the effect
width, denoted byw here, is considered only in the demagnetizi
factors but not in the deformation. If a rectangular ferromagne
plate under consideration is constrained by simple or clam
supports along the edges normal to the direction of width, i
possible that the same results for the magnetoelastic interac
will be obtained sinceNl andNh are independent on the bounda
conditions. In other words, the results given in this paper
independent upon the support conditions of the edges along
longitudinal direction, which is obviously in contradiction to th
practical problems. When the width of a rectangular plate
creases to infinite, from the theory of plates, we know that
deflection of the plate approaches to that of a correspondingbe
Closure to ‘‘Discussion of ‘Response
Bounds for Linear Damped
Systems’ ’’ „2000, ASME J. Appl.
Mech., 67, p. 636…

Bin Hu
e-mail: hbi@mechb.uni-stuttgart.de
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We thank Mr. S. Shahruz for his interest in our paper a
welcome his comment. In our paper we consider a response bo
as a bound with time evolution. Instead of Eq.~7! in Mr. Sha-
hruz’s discussion, our original response bound~Eq. ~49! in @1#!
reads

iy~ t !i<min$A2lm
21~K !E0, e2utA2lm

21~K 8!E0* %. (1)

The terme2ut appearing in this response bound plays an imp
tant role. For the maximum amplitude of the response maxtiy(t)i ,
we prefer to call it amplitude bound. S. Shahruz and P. Maha
mana’s results in paper~@2#! and some results from W. Schiehle
and the first author of this closure in papers~@3,4#! are for the
amplitude bounds. Here we would like to point out that the pr
cedure listed in S. Shahruz’s discussion should be to compute
response bound given in Eq.~1! above. It may not be meaningfu
for the amplitude bounds. In Eq.~29! of our paper, we gave an
amplitude bound

max
t

iy~ t !i<A2lm
21~K !E0 (2)

which also follows directly from Eq.~1! in this closure. We can
see that for the computation of this amplitude bound, most ope
tions in the procedure listed in S. Shahruz’s discussion are
necessary. Compared with Mr. Shahruz and Mr. Mahavaman
amplitude bound given in Eq.~8! of Mr. Shahruz’s discussion, we
have the opinion that our amplitude bound is not harder to co
pute since either the computation of the smallest undamped
quency v1 or the determination whether the matrixDM21K
1KM 21D is positive semi-definite costs extra time. Though h
showed their amplitude bounds are tighter than ours for two
amples, we do not think this conclusion holds in general. Let
choose a simple example to explain this point. If we change
mass matrix in Eq.~9! of Mr. Shahruz’s discussion to

M5F10 0

0 1G or M5F0.1 0

0 1G (3)

and the numerical values of the damping matrix and the stiffn
matrix remain unchanged, then Mr. Shahruz and Mr. Mahavam
na’s amplitude bounds for both cases B1 and B2 become
However, our amplitude bounds remain unchanged. They are
2.51 for the case B1 and 1.15 for the case B2. It is not difficult
find examples which show neither method to be superior.

Besides, we would like to state that although Mr. Shahruz a
Mr. Mahavamana’s paper about amplitude bounds for some n
classically damped systems was published in December 199
the Journal of Sound and Vibration, their results were not known
to the authors since our paper was received by the ASME App
Mechanics Division on Aug. 24, 1998 and the final revision of t
paper was received on Jan. 19, 1999. Therefore, a compar
000 by ASME SEPTEMBER 2000, Vol. 67 Õ 637
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type plate. Whenx is very large, e.g., 103 order in Moon and Pao
@1# to this case, the condition 1/x!Nl51 is satisfied (Nl51 may
be got by Eq.~12! when w→`!. According to Eq.~14a!, how-
ever, it is found that the critical magnetic fieldB̄cr for this case of
cantilevered plates in transverse magnetic fields approaches
finite. This results in contradiction to the finite critical magne
fields given in literature to the same problem, e.g., Moon and
@1#, Zhou et al.@2#, and Zhou and Zheng@3# which are in agree-
ment with the experimental data~@1,4#!. For the prediction of
bending of the plate in this paper, it is found by Eq.~17! and Fig.
3 that the incident anglea of the magnetic field does not influenc
the critical magnetic fieldBcr of the magnetoelastic instability
This result is also in contradiction to the conclusion given in
literature using the imperfect sensitive analysis in Popelar@5# and
the numerical analysis in Zhou et al.@2#. In fact, both the experi-
mental measurement~@1,6#! and theoretical research display a fa
that the critical magnetic field of a cantilevered ferromagne
plate in transverse magnetic field is sensitive to the imperfec
incident angle of misalignment or oblique magnetic field. Tha
one of reasons why the theoretical predictions for the perfect c
of the cantilevered plate in transverse magnetic field~@1,3,7# for
example! are almost higher than their experimental data~@2#!. For
the case of a ferromagnetic plate in longitudinal magnetic fie
the authors gave a differential Eq.~20! which indicates that there
is neither bend nor buckle. The authors did not give a compar
of their theoretical prediction and the experimental data to
increasing of natural frequency of the considered plate~@8#!. Zhou
and Miya @9# successfully gave a theoretical prediction of th
problem. For the general model of magnetoelastic interaction
ferromagnetic plate structures and bodies in arbitrary magn
fields, by which the experimental phenomena of magnetoela
buckling, bending and increasing of natural frequency can be
638 Õ Vol. 67, SEPTEMBER 2000
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scribed, it can be found in Zhou and Zheng@10,11#. It is obvious
that these recent researches of magnetoelastic interaction d
support the opinion of authors: ‘‘It seems that no further progr
has been made in theoretical analysis since the Moon-Pao th
was presented.’’
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