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Research during the latest years has indicated a significant connection between 
climate and solar activity. Specifically, a relationship between Northern Hemi- 
sphere air temperature and sunspot cycle length (SCL) has been shown. By us- 
ing monthly SCL and land air temperature from 1753- 1990 (238 years) we show 
that this relationship also holds for a single observation point in south o f  Swe- 
den. Using data after 1850 yields a statistically significant linear correlation o f  
0.54 between SCL and mean temperature. Furthermore, we show that there are 
indications o f  a low-dimensional chaotic component in both SCL and the inter- 
connected mean land air temperature. This has important implications for hy- 
drology and water resources applications. By pure definition o f  chaos this 
means that it is virtually impossible to make long-term predictions o f  mean tem- 
perature. Similarly, because o f  the strong connection between temperature and 
many hydrological components, it is probable that also long-term water balance 
constituents may follow chaotic trajectories. Long-term projections o f  water re- 
sources availability may therefore be impossible. Repeated short-term predic- 
tions may, however, still be viable. We exemplify this by showing a technique to 
predict interpolated mean temperature 6 and 12 months ahead in real time with 
encouraging results. Improving the technique further may be possible by includ- 
ing information on the SCL attractor. To summarize, research into the possible 
existence o f  chaotic components in hydrological processes should be an impor- 
tant task for the next years to come. 
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Introduction 

Climatic variables such as insolation and temperature are key elements in hydrolog- 
ical calculations. Due to increased interests during recent years concerning climate 
variability and its effects on future water resources availability, the scale of interest 
for hydrologists has started to change from the typical catchment to regional or even 
global processes (e.g. Eagleson 1986). The change in focus of scales is forcing hy- 
drologists to improve the understanding of the climate-atmosphere-land surface as 
an interactive coupled system. 

The possibilities for a significant solar-climatic relationship has been a much de- 
bated issue during recent decades (e.g. Willett 1974; Muir 1977; Colebrook 1977; 
Pittock 1978; Reid 1987; Salby and Shea 1991). Many investigations have utilized 
the sunspot number as an indication of solar activity (Labitzke 1987; Barnston and 
Livezey 1989; van Loon and Labitzke 1988). However, recent research indicates 
that the sunspot cycle length (SCL) may be a more important variable to use when 
studying solar-climatic relationships (Friis-Christensen and Lassen 199 1 ; Kelly and 
Wigley 1992; Butler 1994). The SCL is defined as the time in years between the cy- 
cles of maximum (or minimum) values in the observed sunspot time series (e.g. 
Matsumoto et al. 1996a; 1996b). The SCL has been shown to vary with solar activ- 
ity so that high activity implies short cycles and low activity long cycles (Friis- 
Christensen and Lassen 1991). Consequently, the SCL may be said to give a mea- 
sure of the long-term accumulated energy output of the Sun. Hence, it is reasonable 
to expect an inverse relationship between SCL and temperature. 

If a significant solar-climatic relationship exists it may be utilized to improve the 
prediction accuracy for future temperature changes and to improve the understand- 
ing of how human activities may influence future climate. Similarly, because of the 
close relationship between temperature and many hydrological variables (e.g, evap- 
otranspiration, runoff, etc.) this information may be utilized to make future projec- 
tions of trend in hydrological components. 

Several studies during recent years have indicated nonlinear and chaotic proper- 
ties for sunspots and solar activity in general (Ruzmaikin 1981; Zeldovich and Ruz- 
maikin 1983; Gilman 1986; Kurths and Herzel 1987; Weiss 1988; Feynman and 
Gabriel 1990; Mundt et al. 199 1 ; Berndtsson et al. 1994; Jinno et al. 1995). Mundt 
et al. (1991) noted that one reason why models based on periodic behavior fail to 
predict sunspot time series accurately, may be the nonlinear behavior of the time se- 
ries. Recently, studies that consider the chaotic properties of the Sun's behavior have 
indicated that better predictions can be made using developments within chaos theo- 
ry (Kurths and Herzel 1987; Weiss 1988; Mundt et al. 1991). 

As mentioned above, it is important to establish causal relationships between cli- 
mate and other readily observable variables. Friis-Christensen and Lassen (1991) 
and Kelly and Wigley (1992) both found a link between SCL and land air tempera- 
ture. There was, however, a significant difference in results depending on different 
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filtering methods. Butler (1994) also found a significant relationship between SCL 
and land air temperature at a point. All previous authors considered temperature 
records from the mid-19th century. In this paper we examine the dependence be- 
tween a longer temperature time series (1753-1990) at a point and the SCL. We 
make a comparison between a linear and a nonlinear interpretation of the depen- 
dence. The results of the analysis are exploited by designing a prediction model for 
interpolated temperature in real-time. We close with a discussion on the importance 
of the results for hydrological applications and some important areas for future re- 
search. 

Data Base and Methodology 

We use monthly temperature time series observed in Lund in the south of Sweden 
since 1741 (Tidblom 1876). Because of some gaps in the observations during the 
early years of measurements we analyze monthly series from 1753-1990 (238 
years). Uncertainties and errors are inherent in such long and old records. The loca- 
tion for observations has changed three times for the temperature gage. Also the type 
of gage and the use of wind shield have varied. The largest horizontal distance 
change for the gage has been about two km. Simultaneous observations over a 6- 
year period for temperature at these two locations indicated, however, an absolute 
average difference of only 0.16"C (Andersson 1970). An investigation by Anders- 
son (1970) for the data between 1867-1956 showed that the series may be consid- 
ered homogeneous. 

Another and perhaps a more important type of error is systematic errors caused by 
gradually changing conditions at the observation site. This type of error may include 
local warming effects of the gradually growing urban area where the gage was lo- 
cated. Urban developments have previously been shown to have pronounced effects 
on local temperature records (Balling and Idso 1989). Kawamura et al. (1993) 
showed that a statistically significant linear trend can be identified in the utilized 
monthly temperature time series. The increasing linear trend corresponds to about 
0.84"C per 100 years. It may be assumed that a significant part of this linear trend is 
related to the urban growth and industrialization of the city of Lund (at present a 
population of about 80,000 inhabitants). 

Monthly sunspot numbers were compiled from Chernosky and Hagan (1958) and 
consecutive volumes of J. Geophys. Res. Sunspot numbers were cleaned by using 
the noise reduction algorithm of Schreiber (1993; see also Jinno et al. 1995). This al- 
gorithm was especially developed for nonlinear estimations. Known methods for 
nonlinear and chaotic attractor estimations are extremely noise sensitive, and it is 
therefore necessary to work with cleaned data (Grassberger et al. 1991). 

There is no unique way of determining SCL values. Lassen and Friis-Christensen 
(1992) determined SCL values by using epochs of maxima and minima from the 
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secular smoothing procedure introduced by Gleissberg (1944). The procedure corre- 
sponds to the application of a low-pass filter with coefficients 1, 2, 2, 2, and 1 to the 
series of individual sunspot maximum and minimum epochs. We compare their SCL 
values with raw data and our own estimations from the above nonlinear noise reduc- 
tion scheme of Schreiber (1993). 

To obtain SCL values and corresponding average temperature, epochs between 
minima and maxima of monthly sunspot values were determined. This basic proce- 
dure was used for both raw and noise reduced sunspots. After maxima and minima 
epochs were determined, the average temperature for those periods was calculated 
from the 238-year monthly time series. 

Lorenz (1963) was the first to display possible chaotic properties of the atmos- 
phere. He showed that a dynamic system may be described by 

where t denotes time that is the only dependent variable. The vector x = (xl, x2, x3, ... , 
x,) represents a state of the system and a set of n ordinary differential equations and 
can be thought of as points along a time axis in phase space where the vector F is a 
nonlinear operator acting on x. For some initial conditions the vector x can be shown 
to have a chaotic evolution, i.e., x approaches a strange attractor. At small changes 
of the initial conditions, x will have a very different evolution. Eq.(l) can be ex- 
pressed as a single nonlinear differential equation according to 

This in turn is equivalent to 

In the climatological reality, however, F(x) and initial conditions are unknown. In- 
stead, one often has observations of x(t), e.g, temperature, precipitation records, etc. 
According to a theorem by Takens (1981) (see also Ruelle 1981 ; Packard et al. 
1980) it is possible to use the observations x(t) to evaluate the dimension of the at- 
tractor. 

The general procedure to evaluate the attractor dimension is to perform a phase 
space (sometimes called state space) reconstruction. The basic idea behind a phase 
space reconstruction is that the past and future of the time series contain information 
about unobserved state variables that may be used to define a state at the present 
time (Casdagli et al. 1991). The procedure of phase space reconstruction is motivat- 
ed due to unknown properties of the dynamical system such as relevant variables 
and their total number. Phase space reconstruction was introduced in dynamical sys- 
tems by Packard et al. (1980; see also Ruelle 1981 ; Takens 1981), even though the 
basic idea goes as long back as Yule (1927). 

For deriving the dimension d of the attractor from observations x(t) it is sufficient 
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to embed it in an m-dimensional space (dcm, n) 

Consequently, it is not necessary to know the original system's dimension or state 
variables as long as m is chosen large enough (m=2d+l; Takens 1981). According to 
this and introducing a time lag z one gets (Grassberger and Procaccia 1983a; 1983b) 

Following Eq. (5 ) ,  new time series are generated according to 

where N is a set of points on the attractor embedded in the m-dimensional phase- 
space. In the vector x with the coordinates [x(tl), ... , x(ti + (m - l ) ~ ] ,  a point can be 
chosen xi so that all distances [xi - xjJ for m-1 points can be calculated. By repeating 
this for all i one gets 

where 0 is the Heaviside function defined by B(x) = 0 if xcO and 0(x)=1 if x>O. The 
entity C(r) is called the correlation dimension or correlation integral for the strange 
attractor and defines the density of points around a specific coordinate xi. A possible 
approach to estimate the correlation dimension for time series is to use the algorithm 
according to Grassberger (1990). The correlation integral C(r) is used to describe the 
dimension d of the attractor, i,e., if the attractor is a line, surface or volume. If the at- 
tractor can be described by a line one expects that the number of points within a dis- 
tance r from a coordinate is proportional to r/&, where E is a point in the middle of 
the attractor. If, on the other hand, the attractor is a surface C(r) is proportional to 
( r / ~ ) ~ ,  and similarly if the attractor is a volume C(r) should be proportional to (r/&)3. 
Consequently, we find that for small r, C(r) should relate as 

Values of d that are not integers indicate a fractal and thus chaotic attractor. The 
dimension d of the attractor is given by the slope of log C(r) for the slope of log r ac- 
cording to 

The phase-space characteristics of the attractor indicate the temporal properties of 
the system and how well prediction may be performed. The dimension of the attrac- 
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tor, according to above, signifies how many variables that are necessary to describe 
the evolution in time. For example, d = 2.5, indicates that the time series can be de- 
scribed by an equation system containing three mutually independent variables. It is, 
however, difficult to estimate the structure of the equation system. This is subject to 
intensive research (e.g. Rossler 1976; Gousbet 1991a; 1991 b; Xu et al. 1993; Kawa- 
mura et al. 1996a; 199627). 

The use of Eq. (7) has, however, been criticized because its sensitivity to noise, 
boundary effects, and length of the time series (e.g. Theiler 1986; 1991; Grassberg- 
er et al. 1993). Therefore, several independent methods to determine the dimension 
have to be used. A test that allows one to estimate an integer dimension dE that is the 
minimum needed to unfold the dynamics of the attractor has been delineated by 
Kennel et al. (1992; see also Abarbanel 1996). The method is described as the glob- 
al false nearest neighbors (Abarbanel et al. 1993). The method involves the exami- 
nation, in dimension d, the nearest neighbor of every vector x in dimension d+l. If 
the nearest neighbor shifts away from x when the dimension is increased, then it is 
designated a false neighbor as it moves far away from the attractor. Consequently, 
when the percentage of false neighbors approaches zero the structure of the attractor 
has been unfolded (Abarbanel and La11 1996). 

The phase-space characteristics of the attractor indicate the temporal properties of 
the system and how well prediction may be performed for future times. A quantita- 
tive estimate of the system's predictability is the Lyapunov exponent. It measures 
the system's speed of divergence of trajectories from nearby initial conditions 
(Abarbanel 1996; Rodriguez-Iturbe et al. 1989). Given a continuous system in the n- 
dimensional phase space, long-term changes are monitored in an infinitesimal n- 
sphere. This sphere will develop into an n-ellipsoid due to the locally deforming 
flow. The ith one-dimensional Lyapunov exponent can be defined regarding the 
length of the ellipsoidal principal axis pi(t) according to (Rodriguez-Iturbe et al. 
1989). 

where hi is from largest to smallest. The Lyapunov exponent is consequently related 
to the expansion or contraction of different directions in the phase space. An algo- 
rithm to estimate Lyapunov exponents from time series was given by Wolf et al. 
(1 985). The first Lyapunov exponent is estimated as 

where so is a measure of the initial distance between two nearby starting points. For 
a small time later the distance will be s(t) = s02hlr. Here, the largest Lyapunov expo- 
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nent, hl, governs the linear ellipsoid growth by 2hlt. According to Moon (1987), 
h>O indicates chaotic motions. 

In this paper, we use the approach of Brown et al. (1991) implemented in the soft- 
ware cspW (Randle Inc. 1996) to estimate Lyapunov exponents. This is done by es- 
timating the local Jacobian matrices for underlying dynamics y(n). 

A possible prediction approach is to interpret the attractor dynamics in form of lo- 
cal maps (Abarbanel 1996). Using the points y(k) with their neighbors y(u)(l); 
u=1,2, ..., NB, local functions can be built that continuously extend into the next 
neighborhood: y(u)(l) + y(u)(u; 1+1). The local map Gl(y(u)(l)) that fits this purpose 
is determined by the least squares fit (Abarbanel 1996) 

Local polynomials are trained on the local maps and forward prediction from a point 
zo is based on these maps. The nearest neighbor w(Q) is found for the new point zo . 
The predicted point z1 is calculated as (Abarbanel 1996) 

It should be mentioned that both global and local approximations exist for the above 
calculation procedure (see e.g. Porporato and Ridolfi 1997; Farmer and Sidorowich 
1987; Crutchfield and McNamara 1987; Linsay 1991). In this paper, we will use lo- 
cal approximations however. 

The question whether time-varying climatological phenomena have low-dimen- 
sional properties or not is a much discussed issue at present. In fact, the complexity 
of climatological systems and the large number of degrees of freedom make it un- 
likely that, e.g. precipitation is purely governed by a system of few variables (e.g. 
Lorenz 1991). However, if elements of observed time series can be shown to obey 
deterministic chaos, e.g. underlying trends, then a more complete understanding of 
the system and possibly better prediction techniques can be achieved. 

Linear Relationship Between SCL and Temperature 

Fig. 1 shows a comparison between different ways to determine SCL values. The 
figure shows raw data, smoothed values from Lassen and Friis-Christensen (1992) 
(below denoted LFC 1992), and smoothed sunspot values from the nonlinear noise- 
reduction procedure by Schreiber (1993). By using the data from 1753-1990, totally 
42 points were obtained for the relationship between temperature and SCL. The 
main impression from the figure is that the SCL from raw data and the nonlinear 
smoothing agrees rather well while that of LFC (1992) diverges from the other two 
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Fig. 1. Comparison between SCL values from raw data, from Lassen and Friis-Christensen 
(LFC; 1992), and from the nonlinear smoothing procedure of Schreiber (1993). 

especially for the extreme maximum and minimum at around 1800 and 1830, re- 
spectively. The general appearance of the SCL from raw data and from the nonlinear 
smoothing agrees better to the SCL derived by Kelly and Wigley (1992) especially 
for the period before 1850. The peaks and bottoms for the SCL time series derived in 
this paper are, however, much more pronounced because no filter was applied to the 
SCL series itself as in Kelly and Wigley (1992) and in LFC (1992). Instead the non- 
linear filter was applied to the original sunspot time series before deriving SCL val- 
ues. 

Table 1 summarizes the linear relationships between SCL and mean temperature 
obtained by using raw and treated data. As seen from the table the highest linear cor- 

Table 1 - Pearson product-moment correlation coefficients between SCL and temperature (*, 
**, and *** indicate 0.05,0.01, and 0.001 significance level, respectively, at which 
the hypothesis of a correlation coefficient equal to zero can be rejected; N = 42). 

SCL 
Temperature data Raw data LFC [I9921 Nonlinear smoothing 

Raw monthly -0.320* -0.564*** -0.287 

Linear trend removed -0.436** -0.418** -0.354* 
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Fig. 2. Raw SCL and corresponding mean temperature for the period 1850-1990. 

relation is obtained using smoothed SCL data from LFC (1992). However, also 
using raw SCL data yields significant correlations of up to -0.436 when the linear 
temperature trend is removed. The nonlinear smoothing yields a statistically signifi- 
cant relationship only when the linear temperature trend is removed. 

It is worth noting that when dividing the data into two periods, before 1850 and 
after 1850, the correlation using raw SCL data changes to -0.395 and -0.544 (see 
Fig. 2), respectively. Consequently, when using more recent data the correlation in- 
creases significantly. A possible explanation for this is that the data after about 1850 
are more reliable. For temperature this is undoubtedly the case because gage types 
and shelters were standardized in Sweden from about the mid- 19th century (Anders- 
son 1970). 

Nonlinear Relationship Between SCL and Temperature 

As mentioned above several studies during the latest years have indicated that the 
behavior of the Sun may be nonlinear and chaotic (Ruzmaikin 1981; Zeldovich and 
Ruzmaikin 1983; Gilman 1986; Kurths and Herzel 1987; Weiss 1988; Feynman and 
Gabriel 1990; Mundt et al. 1991 ; Berndtsson et al. 1994; Jinno et al. 1995). We, 
therefore, speculate that also the relationship between the Sun and the Earth's tem- 
perature, as influenced by a complicated atmospheric flow pattern, may be nonlinear 
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Fig. 3. Raw SCL and corresponding mean temperature interpolated to monthly values by 
spline functions (data between 1753-1990). 

and not easily captured in a simple linear correlation as attempted above (e.g. 
Robock 1978). However, since only 42 observation points are available (Fig. 1) it is 
difficult to perform a nonlinear analysis. To still attempt this, we interpolated the 42 
points for the raw SCL data of Fig. 1 and temperature data by use of spline functions 
to arrive at monthly values. Fig. 3 shows the outcome of this. 

Using the interpolated data for SCL and mean temperature as in Fig. 3, phase 
space reconstructions were drawn as shown in Figs. 4 and 5. This simply means that 
the time series is plotted against itself with a proper time lag. This is often done in 
nonlinear analyses to reveal any structure in future time behavior and properties of 
the attractor (e.g. Henderson and Wells 1988; Tsonis and Elsner 1990). As seen from 
the figures it appears as if rather clear attractors emerge and that there is a nonlinear 
behavior of both SCL and temperature. The occurrence of'attractors means that the 
future time behavior is not random but instead appears to settle on a pattern close to 
that of the attractor. This in turn, may indicate the type and degree of nonlinearity 
and if it is possible to make predictions into the future for the time series. Of course, 
interpolated data like this' have to be interpreted cautiously and may only indic,ate 
properties of the actual process. Even so, it is believed that the phase-space portraits 
in Figs. 4 and 5 embrace some of the general and longterm behavior of SCL and 
temperature. 

Fig. 6 the resulting dlog C(r)ldlog r vs. log r according to Eq. (9) for the SCL and 
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Fig. 4. Attractor for interpolated SCL (data as in Fig. 3). Time lag is 2 years. 
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Fig. 5. Attractor for interpolated mean temperature (data as in Fig. 3). Time lag is 2 years. 
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Fig. 6. Slopes d o g  C(r)ldog r versus log r for interpolated SCL and mean temperature (data 
as in Fig. 3). 
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temperature attractors of Figs. 4 and 5. The m-embedding was chosen between as 
21rk10. Different z values were tested but the results proved insensitive to these 
variations. As seen from the figures, there is a clear scaling region for -1.5clog r<O 
for both SCL and temperature. According to the figure, both SCL and mean temper- 
ature display saturation at a correlation dimension dc2.5 in this range. Consequent- 
ly, a nonlinear equation system with three independent variables would be enough to 
describe the evolution in time for SCL and mean temperature (Takens 1981; Ruelle 
1981). 

As mentioned above, however, the algorithm according to Grassberger (1990; Eq. 
(7)) may underestimate the dimension of the attractor. Therefore, we also used the 
global false nearest neighbor criteria according to Abarbanel et al. (1993) using the 
commercial software cspW (Randle Inc. 1996). Fig. 7 shows the outcome of this for 
mean temperature. The figure shows that dE is selected as 2. Thus, the results con- 
firm the correlation integral estimation. 

To further investigate the predictability of interpolated mean temperature, Lya- 
punov exponents were calculated using the cspW software. Fig. 8 shows the out- 
come of this and the three first average local Lyapunov exponents. From the figure it 
is seen that the average local exponents converge to approximate global values as hl 
= 0.35, h2 = 0.0, h3 = -0.65. If one of the exponents is zero this means that the sy- 
stem was properly generated by differential equations. Further, if one exponent is 
positive, this indicates a chaotic behavior. As seen from Fig. 8 this is clearly the 
case. Also, the Lyapunov dimension can be used to estimate the fractal dimension of 
the attractor (e.g. Abarbanel and La11 1996). For mean temperature we find this val- 
ue to be 2.65 which again confirms that the time series behave according to low-di- 
mensional chaos. 

In Fig. 9 we used the information about the local behavior of the attractor and per- 
formed real-time predictions using the methodology according to above. The infor- 
mation from the largest Lyapunov exponent (kl = 0.35) tells us that after about 2 
times 110.35 = 2.8, which gives around 6 months, the forecasting ability will quick- 
ly be reduced due to the growth of errors. Using the cspW, a local polynomial mod- 
el (second-order) trained on approximately half of the data (1753-1860). After this, 
predictions were made in real-time from about 1860 to 1930. As seen from the fig- 
ure predictions are well in phase with the major peaks and depressions. Several tests 
for 6-month ahead predictions were made and increasing the lead time. For 6-month 
predictions results were generally good. However, increasing the lead time quickly 
decreased the prediction accuracy. This is in agreement with the largest Lyapunov 
exponent. An example of 12-month predictions is shown in Fig. 10. It should be 
mentioned that the model is not updated during the course of predictions in time. In- 
stead, the same model is used as was found best for the calibration period during 
1753-1860. Fig. 11, finally, shows a comparison with an ARIMA model. This mod- 
el, however, was updated every 50 months. Even so, as is seen from the figure it 
does not give better results than the chaotic model. 
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Fig. 11. Real time 6-month predictions of mean temperature using an ARIMA model (data 
between 1860-1930). 

Summary and Discussion 

The results for this study can be summarized as: 

1) Previous research has shown that there exists a relationship between northern 
hemisphere mean air temperature and SCL from the mid-19th century (Friis- 
Christensen and Lassen 1991; Kelly and Wigley 1992). Butler (1994) showed 
that this is the case also for land air temperature at a point. We confirmed these 
results and also showed that the statistically significant relationship appears to 
extend back to the mid-18th century for land air temperature at a point. The rela- 
tionship was, however, less significant before the mid-19th century, probably be- 
cause of the poorer quality of temperature data used. 

2) This study showed that there are indications of a low-dimensional chaotic com- 
ponent in both SCL and the interconnected mean land air temperature. Parts of 
the variation and sudden jumps in mean temperature can thus be explained by the 
changes in SCL. The relationship between SCL and mean temperature appears, 
however, to be a highly nonlinear and complex function. 
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3) Even if long-term predictions are excluded by the chaotic definition, the short- 
term time behavior of individual SCL and mean temperature series appears, pos- 
sible to predict using information about the attractor. We showed that repeated 
short-term forecasts of 6 months appear to work well. 

4) A chaotic behavior in long-term temperature characteristics indicates that hydro- 
logical processes coupled to mean temperature may also behave in a chaotic way. 
Some contemporary research indicates that this is the case for large water bodies 
(e.g. Abarbanel and La11 1996). Consequently, this excludes long-term predic- 
tions into the future. However, even so, repeated short-term forecasts may prove 
feasible and this may lead forward to a greater understanding of the system's 
low-frequency behavior and a more broad knowledge and distinction between 
natural and man-made fluctuations. 
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