

View

Online


Export
Citation

RESEARCH ARTICLE |  MARCH 24 2010

The Polar Decomposition And Vector Parametrization Of The
Mueller Matrices 
V. A. Dlugunovich; Yu. A. Kurochkin
AIP Conf. Proc. 1205, 65–71 (2010)
https://doi.org/10.1063/1.3382335

Articles You May Be Interested In

The Biquaternionic acoustic wave equation

J Acoust Soc Am (September 2018)

An algorithm for multiplication of biquaternions

AIP Conference Proceedings (March 2015)

A note on elliptic biquaternions

AIP Conference Proceedings (January 2018)

 06 N
ovem

ber 2024 18:00:58

https://pubs.aip.org/aip/acp/article/1205/1/65/820048/The-Polar-Decomposition-And-Vector-Parametrization
https://pubs.aip.org/aip/acp/article/1205/1/65/820048/The-Polar-Decomposition-And-Vector-Parametrization?pdfCoverIconEvent=cite
javascript:;
javascript:;
https://doi.org/10.1063/1.3382335
https://pubs.aip.org/asa/jasa/article/144/3_Supplement/1873/716336/The-Biquaternionic-acoustic-wave-equation
https://pubs.aip.org/aip/acp/article/1648/1/660009/770186/An-algorithm-for-multiplication-of-biquaternions
https://pubs.aip.org/aip/acp/article/1926/1/020033/720661/A-note-on-elliptic-biquaternions


The Polar Decomposition And Vector Parametrization Of
The Mueller Matrices

V.A. Dlugunovich and Yu.A. Kurochkin

B.I.Stepanov Institute of Physics of the National Academy of Sciences of Belarus,
68 Nezalezhnasci  Ave., Minsk, Belarus 220072

Abstract.  It was demonstrated that presentation of the coherent matrix (polarization density matrix) of the
electromagnetic beams as biquaternion corresponding to the four-vector of the pseudo Euclidean space with
intensity and Stokes parameters as components gives the possibility for introducing of the group transformations of
such values isomorphic to the S(3.1) group. These transformations are the subset of the set of polarization Mueller
matrices creating algebraic structure of semigroup. Reduction of the semigroup of Mueller matrices to the group of
transformations make it possible to use the vector parameterization of transformations of the group SO(3.1) for
interpretation of polar decomposition of the Mueller matrices. In this approach in particular the elements of Mueller
matrices corresponding to retarders and polarizers are more simple and natural connected with there
eigenpolarizations.

Keywords: Stokes parameters, Mueller matrices, biquaternions, vector-parameter, polar
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INTRODUCTION

There are different methods of the
description of the polarization of the
electromagnetic waves that are connected to each
other anyhow [1–5]. One of the more popular is
the method based on the Stokes vector parameters
of  radiation  and  the  Mueller  matrixes  of  the
investigated objects [5, 6]. This method becomes
very important recently due to the wide
application of Stokes and Mueller polarimetry in
medicine [7, 8], biology [9], nondestructive
testing [10, 11] and remote sensing of materials
and objects [12, 13].

The polarization measurements  play very
important role  in the astronomy and astronomies
has been contributed to the creation of the
instruments and devices for polarizing
experiments [14-17].

As well known the four-by-four Mueller
matrix M is defined as the matrix which
transforms an incident Stokes vector S into  the
exiting (reflected, transmitted, or scattered)
Stokes vector S’
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or in expanded form

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç

è

æ

3

2

1

0

33323130

23222120

13121110

03020100

'
3

'
2

'
1

'
0

S
S
S
S

mmmm
mmmm
mmmm
mmmm

S

S

S

S

.    (2)

By its physical nature the Mueller matrix
optionally possesses inverse matrix and therefore
in general their set did not form a group, but form
a semigroup. But application of the Mueller
matrix in many cases shows the possibility and
effectivity of restriction semigroup of this matrix
to a group [18–22]. The methods of the theory
group and its representations are the
mathematical apparatus of symmetry physical
theories that is thoroughly developed and very
effective at the solving of many physical
problems.

We think that efficiency of the reduction of
a number of transformations (2) to a group
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appears particularly significant for the
interpretation of polar decomposition of the
Mueller matrix that is developed in detail for the
optical problems [23] and is wider applied in the
optical calculations. Such decomposition has
evident physical interpretation as optical, and
from  the  kinematic  points  of  view  as  it  will  be
shown below.

The aim of this work is the interpretation of
the polar decomposition of the Mueller matrix
based on the results of [24] in terms of the vector
parameterization of the group of transformations
SO(3.1) isomorphic to the Lorentz group that is
valid for the problems appeared in the optic.

QUATERNION PRESENTATION OF
COHERENCE MATRIX AND GROUP OF

MUELLER AND JONES MATRICES

In the work [24] on the basis of
presentation of the matrix
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in the form of decomposition over the matrix
basis formed from the unitary 2×2 matrix and
Pauli matrices
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are the Pauli matrices, and coefficients S0, S1, S2,
S3 are the Stokes parameters, the transition to the
arbitrary basis of the quaternion algebra is
realized

0 0у 1,у , 1,2,3k ke ie k® = ® = ,   (6)
that is determined by the next relationships
between the introduced algebraic units [20]

0 0 0

2
0 0

, 0,

, ( , , 1, 2,3).
j k jkl l jk k ke e e e e e e e

e e j k l

e d= - - =

= =
 (7)

In the basis (7) one may find for the matrix
(4)

kk eiSeS -= 00
0g .

In the sequel instead of 0g  in definition (8)
we will use the expression that is differed from

0g  only by multiplying on imaginary unit and
symbolized by S. The expression

kk eSeiSS += 00 , (8)
is a biquaternion that is the vector of the four-
dimensional pseudo-Euclidean space [25]. The
Stokes  parameters  are  the  components  of  this
vector. Such biquaternions are distinguished from
number of biquaternions (in this case of
biquaternions determined over set of complex
numbers) of general form by condition

SS -=* .  (9)
In the expression (9) the overline denotes

the quaternion conjugate:

kk eSiSS -= 0 ,  (10)
and asterisk denotes usual complex conjugation

kk eSiSS +-= 0
* .

At this space biquaternions transformations
are determined

*' AASS = ,  (11)
that as well known forms the group of
transformations isomorphic to the group of
SO(3.1) [20] when biquaternions A are followed
the condition

.1*,1 * == AAAA         (12)
The expression (11) may be presented in

matrix form in the four-dimensional space. For
that it is enough the biquaternions S and S’
represent as a column vector whose components
are Stokes parameters [20]. Thus the
transformation (11) is a form (special case) of the
transformation  (1),  (2)  that  is  prescribed  by
Mueller matrix. The fact that biquaternions (or
matrices)  are  used  is  not  contradicted  to  the
reality of the Stokes parameters. As well known
the formulation of the transformations of
rotations at the pseudo-Euclidean space what kind
are the transformations (11) may be simply
changed in terms of objects and structures on real
numbers. They are such substantially.
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The transformation (11) is the
representation of transformations of group
separated in the semigroup of 2×2 Jones matrices.
The Jones matrices are determined the
transformation of the complex components of the
electric-field vector Ea(a = 1,2) in the phase plane
[1, 5]

1 11 12 1

2 21 22 2

'
' , .

'
E A A E

E AE
E A A E
æ ö æ ö æ ö

= =ç ÷ ç ÷ ç ÷
è ø è ø è ø

r r
   (13)

The 2×2 dimension matrix A may be
decomposed on the basis (5), (7) and be
represented as biquaternion, as it was done in the
case of matrix (3) and (4).

At the reduction of the set of the Jones
matrices to the group of 1

0 (2. )R SL CÄ  its
presentation (13) necessary to consider as
fundamental «spinor» while the transformation
(11) in the space of biquaternions (3), (4) is
realized «vector» presentation of SL(2.C) group.
The complex eigenvalues ζexp(iδ)  of  matrix A
also  presented  as  a  polar  decomposition  of  a
complex  number  conforms  to  the  so
eigenpolarizations of the optical elements
described by this Jones matrix A that coefficient ζ
determines the amplitude (its squared modulus is
the intensity) of the wave transmitted by the
optical element, and coefficient exp(iδ) obviously
determines the phase change or retardance of a
device. The diattenuation of a device D
characterizes the dependence of the intensity
transmittance of an element from the incident
polarization state and is determined by [6, 18]

2 2

2 2

q rq r

q r q r

T T
D

T T

x x

x x

--
= =

+ +
,   0 ≤ D ≤1. (14)

The retardance R is related with a phase
change of the transforming waves and defined as

q rR d d= - ,   0 ≤ R ≤1.          (15)
Polarization elements as polarizers and

retarders are characterized by diattenuation D and
by phase change due to birefringence R. For ideal
polarizer D = 1 meaning complete attenuation (by
absorption or reflection) of one of the polarized
component of the transmitted radiation.

VECTOR PARAMETERIZATION OF
THE TRANSFORMATIONS OF SO(3.1)

GROUP AND ITS POLAR
DECOMPOSITION

For matrix A known polar decomposition
means its presentation as a product of the unitary
matrix U and Hermitian matrix H.

For vector representations using the same
terminology as for the group of transformations
of rotations of four-dimensional pseudo-
Euclidean space SO (3.1) (Lorentz group
isomorphic to a group of transformations (11))
one can said that this decomposition corresponds
to the presentation of the transformation in the
form of a product of the transformation of a pure
rotation and the transformation of the «boost»
type, in other words pure Lorentz transformation.

Polar decomposition has very clear physical
meaning, because each of the factors in this
decomposition there is a certain optical element,
namely, for the factor corresponding to Jones
unitary transformation (13) or rotation in the
Muller transformation (11) there is a retarder, for
factor corresponding to Hermitian factor in the
Jones transformation or Hermitian (symmetric)
factor in the Muller transformation there is a
polarizer.

We will present the results of polar
decomposition of the Mueller matrices and its
physical interpretation obtained in [18] with the
help of vector parameterization and noted the
undeniable advantage of this approach.

Recall that a vector parameterization [25]
of the transformations of group SO (3.1) (11)
defined with biquaternions (12) is introduced by
the following expressions

2

* * *
* *

**2

1 , ,
1 ( )

1 , .
1 ( )

q A AA q
A Aq

q A AA q
A Aq

+ -
= =

++

+ -
= =

++

r
r

r

r
r

r

    (16)

where , ;k kq a ib q q e= + =
rr r r ( 1,2,3)ke k =  are

the basal quaternion elements. Here for the
product of biquaternions

'' ( '') ' ( ') ( )A A q A A A q A q= = =
r r r

 (17)
the formula of the composition of vector-
parameters is correspond

67

 06 N
ovem

ber 2024 18:00:58



' ''' ',
1 ( ' )

q q q qq q q
q q

+ + ´
= á ñ =

-

r r r r
r r

r r .      (18)

Relations similar to (16) – (18) obviously
occurred for the complex-conjugate parameters.

The transformation (11) is introduced as a
qr  and *qr  dependent 4×4 matrix [26] in the
following way

*
2

2 * *

* * 2 * * *

1
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1 ( ) [ ]
[ ] 1 ( )

L q q
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q q q qq
q q qq q q q q q q q´

= ´
+

+ - - -

- - - + + + × + ×

æ ö
ç ÷ç ÷
è ø
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r r rr r r r r r r

(19)
presented in a block form where the point
between vectors denotes a matrix-dyad, and
oblique cross over vector denotes a matrix dual to
this three-dimensional vector ( )ik ijk jq qe´ =

r
. In

turn vector-parameter qr  is expressed through the
matrix *( , )L q qr r .

*1 ( )
2 0t

a ibL Lq q
L ib

´æ ö-
+ = =ç ÷ç ÷-è ø

rr
%r r

r ,    (20)

where L%  is a matrix transposed to a matrix L, and
Lt is spur of matrix L% .

VECTOR-PARAMETER OF THE
MUELLER MATRICES AND

EIGENPOLARIZATIONS OF POLARIZERS
AND RETARDERS

In the work [23] which provides an
interpretation of the polar decomposition of
Mueller matrices are introduced the vector D

r

specified the attenuation direction, and the vector
R
r

 specified the retardation direction. The vector
D
r

 is defined as the product of the diattenuation
D and the Stokes vector characterizing the
eigenpolarizations of a polarizer. This vector is a
vector part of the Stokes 4-vector (biquaternion)
normalized to the intensity of the incident
radiation ),( sis r

= . Here

,D Ds=
r r 2( ) 1,s =

r
(21)

and corresponding Mueller matrix of such optical
device introduced in [23] is the «boost»

multiplied on the transmittance Tu for unpolarized
light. The function of vector D

r

 is  similar  to  the
role of speed in the transformations used in the
special relativity. Purely imaginary vector-
parameter iur  of this transformation is expressed
by standard practice through a vector D

r

(see
[26]), namely

21 1 ( )

Du
D

=
+ -

r
r

r .  (22)

The corresponding Mueller matrix can be
expressed in accordance with the formula (19)
when was adopted q iu=

r r
. And vice versa on the

base of the measured Muller matrix for an ideal
polarizer it is possible to find the corresponding
vector-parameter by using (20), and hence the
Stokes vectors corresponding to the
eigenpolarizations of the polarizer.

The vector R
r

 characterizing the retardation
effects (phase change) is determined for phase
plates in which the axes of its eigenpolarizations
are specified by the Stokes 4-vector ( , )r i r=

r
 as

2, ( ) 1.R Rr r= =
r r r

     (23)
The corresponding Mueller matrix is the

transformation matrix of a pure rotation forming
the subgroup in the group of transformations
SO(3.1). Real-valued parameter cr  is determined
this 4×4 matrix of the transformations in the
following way

2
Rc rtg=

r r
.  (24)

There is no difficulty in understanding that
the Stokes 4-vectors ( , )DS i D= ±

r
 and

( , )RS i R= ±
r

 are the eigenvectors of the Mueller
matrices determined by vector-parameters (22)
and (24) respectively.

In the first of them symbol «plus»
corresponds to the maximum transmittance and
symbol «minus» corresponds to the minimum
transmittance of a polarizer, in the second case
symbol «plus» corresponds to the fast axis of the
eigenpolarizations of a retarder and symbol
«minus» corresponds to the slow axis.

The Mueller matrix of the optical element
consisted  with  a  retarder  and  polarizer  is  the
product of
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( ) ( ) ( , )u uM T L c L iu T L c iu= = á ñ
r r r r

,   (25)
where ,q c iu= á ñ

r r r
 is a composition (18) of the

vector-parameters (22) and (24).
Here are some consequences of the

formulation of the polar decomposition of the
Mueller matrices in the vector parameterization.

It is known that the Mueller matrix of a
series  of  phase  plates  is  the  product  of  the
Mueller matrices of the each of phase plate.
Using vector parameterization with the
composition (18) of the vector-parameters (24)
one can find a common vector-parameter of the
system independently of the mutual orientation of
the  axes  correlated  to  the  axes  of  the
eigenpolarizations. In a view of the group
properties of such an operation it should be that
the beam transformation will be associated only
with a phase change.

At the combination of a series of polarizers
with the different orientation of the directions of
the eigenpolarizations it should be observed not
only the effect of the attenuation of the
transmitted radiation but the phase change that is
similar to the Thomas precession in relativistic
mechanics. This is the consequence of the
ungrouped properties of the composition of the
pure imaginary vectors (22) corresponding to the
product of the Mueller matrix of each polarizer.
This thesis is in accordance with the well-known
Jones theorem [27] claiming that for a light with
the fixed wavelength a random set of partial
polarizers (linear amplitude devices) and ratardes
is equivalent to an optical system with one
retarder and one rotated partial polarizer. As it
was  mentioned  above  this  thesis  is  true  for  a  set
of partial polarizers too, moreover the developed
above approach gives a simple method of
calculation of the eigenpolarizations of the
equivalent optical system. We will demonstrate
this by the example of a system consisting of a
two consistent partial polarizers with the
eigenpolarizations prescribed by the Stokes
vectors according to (1) (1) (1)( , )S i D s=

r
 and

(2) (2) (2)( , )S i D s=
r

. Then the vector-parameters

1iu-
r

 and 2iu-
r

 for  each  of  the  polarizers  is
determined according to (22) as

(1)

1 (1) 21 1 ( )

Du
D

=
+ -

r

r
r ,

(2)

2 (2) 21 1 ( )

Du
D

=
+ -

r

r
r ,

(26)
where (1) (1) (1)D D s=

r r
, (2) (2) (2)D D s=

r r
, and

(1) 2 (2) 2( ) ( ) 1s s= =
r r

.
The vector-parameter of the equivalent

system according to the composition law (18)
corresponding to the product of the Mueller
matrix of two partial polarizers as described
above will be

1 2 1 2
1 2

1 2

,
1 ( )

iu iu u uq a ib iu iu
u u

+ - ´
= + = á ñ =

+

r r r r
rr r r r

r r , (27)

where obviously

1 2

1 21 ( )
u ua

u u
´

= -
+

r r
r

r r , 1 2

1 21 ( )
u ub

u u
+

=
+

r r
r

r r ,  (28)

where ( ) 0ab =
rr

.
This vector-parameter is complex. It can be

represented as a composition corresponding to the
polar decomposition (25) of the Mueller matrix of
the obtained equivalent system as

, ( )q c iu c iu i c u= á ñ =+ + ´
r r r r r r r

.     (29)
It  takes  into  account  that  as  it  follows  from (27)

2 * 2( ) ( )q q=
r r

 and so ( ) 0cu =
rr

, where cr  and ur

characterize the equivalent optical system.
Comparing (27) with (29) one can obtain

1 2

1 2

,
1 ( )

u uc a
u u
´

= = -
+

r r
r r

r r 2

1
1

au b
a

´-
=

+

r
rr

r ,  (30)

where a´r  as  before is  the operator  of  the vector
product. After non-complicated but rather
intricate transformations it follows that

(1) (2)

(1) 2 (2) 2 (1) (2)(1 1 ( ) )(1 1 ( ) ) ( )

2
,

D D
c

D D D D

R
rtg

´
= =

+ - + - +

=

r r

r

r r r r

r

where as in the case of (23), (24) the unit vector
rr  that defines the eigenpolarizations of the
resulting equivalent phase element. For the
effective D

r

 connected with ur  (30) according to
(22) one can obtain

69

 06 N
ovem

ber 2024 18:00:58



(1) (2)
(1) (2) 2 (2)

(2) 2

(1) (2)

1 ( )
( 1 ( ) )

(1 1 ( ) )
.

1 ( )

D D
D D D

D
D

D D

+
- +

+ -
=

+

é ù
ê ú
ê úë û

r r
r r r

r
r

r r

A distinctive feature of the calculations is
their independence of the choice of the reference
frame.

CONCLUSION

In the conclusion we note another
significant feature that differ the approach based
on the vector parameterization as the
transformations realizing both the Jones and
Mueller matrices approaches. This feature is in
more  simple  and  useful  relation  between  the
vector-parameters determining by the
eigenpolarizations of a polarizers or phase plates
and the experimentally measured elements of the
Jones and Mueller matrices [23]. In the traditional
approach this relation is realized via exponent. In
the presented approach this relationship is
determined by formula (16) for the Jones matrices
and (19), (20) for the Mueller matrices. On basis
of the measured elements of the Jones and
Mueller matrices the eigenpolarizations of
polarizers are defined according to formulas (21),
(22) and for retarders according to formulas (23),
(24) respectively.
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