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ABSTRACT

Optimization of water supply looped networks has attracted a great deal of attention from

researchers for more than 30 years. As the classical water supply looped network optimization

problem is mathematically non-convex and multimodal, the resulting solution of most approaches

is uncertain in the sense of how close it is to the ‘‘best’’ solution. In many cases, this ‘‘best’’’ or

‘‘global’’ solution is invoked and pursued only intuitively without a clear understanding of its

meaning. This paper discusses what is involved in ‘‘global’’ solutions and the role that pipe flow

distribution can play to deal with non-convexity and multimodality in a new context. The author

has introduced this new context recently after formulating a new objective function capable of

finding a looped network that can be economically more attractive than its related branched one.

Therefore, the convenience of an approach dealing with flows and heads, as relevant decision

variables, is encouraged in this paper and its advantages enumerated under the new concepts.

The entropy approach is studied critically and an example is provided for comparison with the

proposed approach.

Key words 9999 flow distribution, looped networks, network design, network reliability, optimization,

water supply

NOTATION

a coefficient of pipe failure frequency formula

B parameter in Equation (11)

C constant defined in Equation (1)

Cn1, Cn2 number of pipes connected to nodes n1 and n2

of broken pipe

c1 annualizing factor

ca average cost of supplying water to affected

consumers in dollars per unit volume.

cf average cost of repair in dollars per day.

dk diameter of pipe k

exs excess pressure in node s

fQ1 fraction of flow Q1 of Figure 1

hf head loss in pipe

H total head in source node

i pipe initial node; node counter

j pipe final node

K parameter in Equation (7)

k pipe counter

Lk length of pipe k

m exponent of pipe cost formula

NN total number of nodes

NP number of pipes

NS number of source nodes

n exponent of flow in friction formula

pm required minimum pressure

Qk pipe flow

Qbreak flow to be supplied to affected consumers.

Qn1, Qn2 demand flow in nodes n1 and n2 of broken pipe.

q exterior flow at node

r exponent of diameter in friction formula
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Echeverrı́a’’ (CUJAE),
Calle 114 No. 11901 e/119 y 127 CP -19390,
Marianao,
La Habana,
Cuba
E-mail: bienvenido@cih.cujae.edu.cu;

jbmr27@yahoo.es

doi: 10.2166/hydro.2011.082

& IWA Publishing 2011 Journal of Hydroinformatics 9999 13.4 9999 2011687

Downloaded from https://iwaponline.com/jh/article-pdf/13/4/687/386573/687.pdf
by guest
on 23 January 2019



s source node counter

tf average number of days for repair of pipe failure.

u exponent of pipe failure frequency formula

Vf volume per day that must be supplied to affected

consumers

z ground elevation

b parameter defined in Equation (10)

Z coefficient of pipe cost formula

l constant defined in Equation (4)

m parameter defined in Equation (6)

o parameter defined in Equation (8)

c objective function

z set of pipes connected to given node

INTRODUCTION

Most of the many different approaches that have been pre-

sented for the optimization of water supply looped networks

use, as relevant decision variables, either flows and heads (or

friction losses) or pipe diameters. As for mathematical tech-

niques, linear (LP) and non-linear programming (NLP) can

be found as well as evolutionary and integer programming

algorithms. In many cases the optimization procedure

involves two or more stages. This diversity is a consequence

of the complexity of the problem.

Uncertainty is a major drawback inherent in the field of

water-supply looped-network design optimization. Uncer-

tainty is present when estimating current and future demands,

diurnal demand variation, pipe friction coefficient, network

and system reliability, etc. Adding to this assertion is the

uncertainty arising from the results of the optimization pro-

cedure itself. As the classical water supply looped network

optimization problem is mathematically non-convex and

multimodal, despite the existence of numerous approaches

to deal with it, no single one can claim achievement of global

optimality in the general case. Therefore, the final solution is

uncertain because it is not known how far it can be from the

actual global optimal solution.

This uncertainty is typical (although not exclusive) for

some approaches whose solutions are dependent on initial

trial solutions (Morgan & Goulter 1985; Park & Leibman

1993; Gupta & Bhave 1996; Xu & Goulter 1997). Even more,

for the classical formulation (minimize capital cost objec-

tive under nodal and loop constraints), the achievement of

actual global optimality would be useless in practice

because it would lead to purely branched networks. The

meaning of global optimality will be further discussed

below.

Apart from the uncertainty regarding optimality, some

approaches produce continuous pipe diameter solutions

(Varma et al. 1997; Tanyimboh & Templeman 2000) or

the so-called split pipe solutions (Loganathan et al. 1995)

which further deviate them from the practical engineering

solution.

Procedures dealing directly with discrete pipe diameters

have been introduced. A group of these techniques apply

evolutionary algorithms (Savic & Walters 1997; Cunha &

Ribeiro 2004) that, despite their capacity to evaluate tens of

thousands of solutions, are not free from the above-men-

tioned drawbacks. Also, they seem to be limited by the

computer time load for actual large networks. Just recently,

an integer-programming algorithm (IPA), handling discrete

diameters, has been proposed (Samani & Mottaghi 2006).

Although the IPA example solution provided is a quasi-

branched (pseudo-looped) network, the technique might be

promising if it proves to be consistent and robust (Martı́nez

2008).

In some cases a reliability constraint has been added (Xu

& Goulter 1999; Afshar et al. 2005) but most reliability

definitions existing so far are not effective in assuring the

necessary redundancy. Recent developments on multiobjec-

tive techniques are worth mentioning (Devi Prasad & Park

2004; Farmani et al. 2005) although they might be limited in

problem size as well as the need for further research regard-

ing the type of reliability parameter and to enhance compar-

ability of solutions with other techniques.

After the previous discussion, it follows that a procedure

would be quite advantageous if it could be devised with the

following characteristics:

� an adequately redundant, looped network is obtained,
� the solution is a unique, reproducible solution,
� the solution is a global optimum under certain circum-

stances,
� it is suitable for large networks.

This is the purpose of the present paper.
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CLASSICAL OBJECTIVE FUNCTION

Although the basic decision variables are pipe diameters,

perhaps due to the high non-linearity associated with dia-

meters, some researchers have formulated the problem in

terms of separated sets of flows and heads (Alperovitz &

Shamir 1977; Chiong 1985; Sarbu & Kalmar 2002; Martı́nez

2007, 2010).

The objective function (OBF) in Chiong (1985) cited by

Martı́nez (2007, 2010) is restricted to account for costs only in

the pipe network. The sum c of annualized capital costs and

annual energy costs which is to be minimized is then

c ¼ c1Z
XNP

k¼1

Lkdm
k þ C

XNS

s¼1

qsðpms þ expðxsÞ þ zsÞ ð1Þ

where k,s: subscript for pipes and source nodes; L,d: pipe

length and diameter; NP: number of pipes; NS: number of

source nodes; Z,m: coefficient and exponent, respectively, of

pipe cost formula; c1: annualizing factor; C: constant includ-

ing annual pumping time, unit price of energy and units

conversion; qs: known inflow to source node s; pms: known

minimum pressure requirement in node s; zs: ground eleva-

tion in node s; exp(xs): excess pressure in node s, the use of

this type of variable is because it improves convergence of the

solution algorithm;

subject to:

hfk¼ðpmi � pmjÞ þ ðexpðxiÞ � expðxjÞÞ þ ðzi � zjÞ

for k ¼ 1;y; NP ð2ÞX
k2z

Qk þ qi ¼ 0 for i ¼ 1;y; NN � 1 ð3Þ

hfk ¼ lkLk
Qn

k

dr
k

for k ¼ 1;y; NP ð4Þ

where i,j: subscripts in Equation (2) for nodes belonging to

pipe k; Qk: flow in pipe k (positive if leaving the node);

hfk: head loss in pipe k; qi: exterior flow in node i (outflow

þ ); z: set of pipes k connected to node i; NN: total number of

nodes in network; lk: constant including the friction coeffi-

cient; n,r: exponents of the friction formula.

Equation (2) is an expression of Bernoulli’s law for each

pipe, Equation (3) is the node flow continuity and Equation

(4) is a generic friction formula. Substitution of Equations (4)

into the OBF leads to

c ¼ c1Z
XNP

k¼1

mk
Qmn/r

k

hfm/r
k

þ C
XNS

s¼1

qsðpms þ expðxsÞ þ zsÞ ð5Þ

where

mk ¼ Lkð lk Lk Þm/r: ð6Þ

In this model the decision variables (unknowns) are the x

values in nodes (all but one) and one Q value for each loop.

This formulation is the same as the classical one except for

the energy term.

In order to obtain a convenient expression for the OBF,

substitute Equation (3) into Equation (5) and assume that

nodal heads at sources are given so the energy term in

Equation (5) is constant. Then a specific equation can be

written for the simple one-loop network of Figure 1 as

follows:

c0 ¼ c1Z
m1

hfm/r
1

� �
Qmn/r

1 þ m2

hfm/r
2

� �
ðQ1 � qCÞmn/r þ m3

hfm/r
3

� �
ðqA �Q1Þmn/r

�

þ m4

hfm/r
4

 !
ðqB þ qC �Q1Þmn/r

#

where c0 equals the former c by removing the constant

energy term, flow Q1 has been chosen as the independent

flow value in the loop and then all Qk values are expressed in

terms of Q1 through Equation (3).

A mathematical study of this equation would show that if

Q1 is given then the variation of c0 with nodal heads would be

convex with one single minimum. On the other hand if all hfk
were known then a plot of c0 versus Q1 could be drawn from

the following equation:

c0 ¼ K1Qmn/r
1 þK2ðQ1 � qCÞmn/r þK3ðqA �Q1Þmn/r

þK4ðqB þ qC �Q1Þmn/r ð7Þ

where now all K values are constant. By taking equal values

for them, the plot will not be biased by differences in the hfk
values.

Assuming reasonable values for the parameters (K1¼
K2¼K3¼K4¼ 3790; m¼ 1.5; n¼ 2; r¼ 5; qA¼ qBþ qCþ qD;

qB¼ 80; qC¼ 60; qD¼ 60 L/s) a plot is made of Equation (7)

as the case (a) thick line in Figure 1. The plot is presented

with a non-dimensional abscissa scale (fQ1¼Q1/qA) and the
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ordinate scale is $/year but its numerical values are irrelevant.

Most interesting here is the shape of the curve and the

following characteristics: (i) the curve has three maxima as

stationary points; (ii) there are also four non-stationary

minima located precisely where each one of the four pipe

flows are zero: Q1¼ 0 for fQ1¼ 0; Q2¼ 0 for fQ1¼ 0.3; Q4¼ 0

for fQ1¼ 0.7; Q3¼ 0 for fQ1¼ 1.0.

Thus the concavity and multimodality here can be clearly

noticed. It is also apparent from Figure 1 that in all minima

there is a discontinuity in the derivative. This can also be

obtained by calculating the derivative of Equation (7) with

respect to Q1 and noticing that it goes to infinity at those

points. It has been shown (Chiong 1985) that this function

would become convex and unimodal for mn/r41, which

could only happen for m42.5 and this would deny the

economy of scale in pipe costs; that is why it cannot be

achieved under common values of the exponents.

Where are, in Figure 1, the global optima? In this case

there are four local minima and because of the symmetry of

this simple network there are two global minima. Not even

the global optimum is unique. When minimum diameter or

minimum flow restrictions are included, the search for

minimum cost would lead to, say, in Figure 1 with four

possible solutions. Generalization of this reasoning to a

large network is obvious: the restricted global optimum

can be multimodal!

Although it is true that Figure 1 has been drawn for

constant hfk for the sake of simplicity, it is believed that this

analysis gives enough insight into the relationships involved.

As an extension, similar conclusions can be derived from

more general cost-flow drawings for two loops given by

Loganathan et al. (1995) and (even better) from Kessler &

Shamir (1989).

For varying parameters the plot of c0 can show many

different shapes, for instance, after a large increment in the

length of one pipe the graph will show a very well defined

global minimum which implies the removal of that pipe. This

effect is stronger as pipe size increases.

Another interesting feature arises for the hypothetical

case of m42.5. The case (b) thin-line curve in Figure 1 is

the plot of c0 for m¼ 3 (scale on the right). Now there is only

one global minimum at fQ1¼ 0.5 because of symmetry and

the derivative is discontinuous again at fQ1¼ 0.3 and 0.7. It

can be shown that changing the parameters (for instance by

increasing one pipe length) to eliminate symmetry the mini-

mum could be located at or near one of these two values

where one of the flows is zero. This has a very instructive

conclusion: even when there would be no economy of scale

and the classical looped-network problem had a unique

absolute global minimum, there is no point in searching for

this global optimum as the curse of the branched result would

still be there.

Why does this happen? This happens because mathe-

matics responds strictly to what is written in the OBF and

constraints. The main reason for looping a network has not

been expressed mathematically.
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Figure 1 9999 Plot of Equation (7) for one-loop network and cases (a) and (b).
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NEW OBJECTIVE FUNCTION

A new OBF has been proposed by Martı́nez (2007, 2010). The

new OBF is obtained by adding a new term to Equation (1),

which accounts for the expected annual cost involved in a

pipe breakage. This expected cost includes the cost of failure

repair and the cost of supplying affected consumers by other

means. In such a formulation, explicit use is made of an

empirical formula to express the frequency of failures:

c ¼ c1Z
XNP

k¼1

Lkdm
k þ

XNP

k¼1

okLkd�u
k þ C

XNS

s¼1

qsðpms þ expðxsÞ þ zsÞ

ð8Þ

where o¼ a � tf(cfþ ca �Vf): coefficient associated with each

pipe; a �L �d�u: empirical formula giving the expected num-

ber of failures per year in terms of pipe diameter and length (a

and u are known constants); tf: average number of days

for complete repair of each pipe failure; cf: average cost

of repair in dollars per day; ca: average cost of supplying

water to affected consumers in dollars per unit volume;

Vf¼ 86400 �Qbreak: volume per day that must be supplied to

affected consumers; Qbreak¼ (Qn1/Cn1þQn2/Cn2) for broken

pipes in loops; Qn1, Qn2: demand flow as volume per second

in nodes n1 and n2 of the broken pipe; Cn1,Cn2: number of

pipes respectively connected to nodes n1 and n2; Qbreak¼Qk

for pipes not in loops (the whole pipe flow). Further details

can be found in the original paper of Martı́nez (2007). Sub-

stitution of Equation (4) into Equation (8) leads to

c ¼ c1Z
XNP

k¼1

mk
Qmn/r

k

hfm/r
k

þ
XNP

k¼1

bk
Q�un/r

k

hf�u/r
k

þ C
XNS

s¼1

qsðpms þ expðxsÞ þ zsÞ

ð9Þ

where

bk ¼ okLkð lk Lk Þ�u/r: ð10Þ

By substitution of Equation (3) into (9) and making

similar assumptions to those leading to Equation (7) it can

be obtained that

c00 ¼ c0 þ B1Q�un/r
1 þ B2ðQ1 � qCÞ�un/r

þ B3ðqA �Q1Þ�un/r þ B4ðqB þ qC �Q1Þ�un/r ð11Þ

where c0 is the same as in Equation (7) and the B values are

constant. For a plot of Equation (11) another set of para-

meters are assumed (105a¼ 3.50; u¼ 1.27; tf¼ 2.0 day;

cf¼ 500 $/day; ca¼ 2.0 $/m3). The thick line, case (a), in

Figure 2 represents c00 while the thin line, case (b), is the

sum of terms to the right of c0 or (c00�c0). The latter (c00�c0)
accounts alone for the new term in the new OBF mentioned

above. Let it be called New¼ (c00�c0).
It can be seen that the shape of the new term New, case

(b), is convex although multimodal. The function goes to

infinity where any one flow is null. The complete plot c00 of

Equation (11), case (a), is very similar to case (b). This means

that under the chosen parameter values, the addition of c0 to

New, despite its concave nature, cannot reverse the convexity

of the new term New. But if the parameters are so changed

that the relative weight of c0 increases, a situation might be

reached in which the minima will be located near the zero

flow points and concavity will show up in the shape of the c00

curve. This situation is illustrated in Figure 3. This figure was

obtained by multiplying the pipe cost coefficient by a factor of

10. Exactly the same drawing can be obtained by dividing the

two cost indices of pipe breakage and the vertical scale by 10.

The effect of enlarging a pipe here also tends to enhance

one of the minima with a similar implication of greatly

reducing the flow of that pipe. This effect and the one

shown in Figure 3 are considerably less dramatic with the

new OBF – notice that now it is impossible to reach a zero

flow and it is very likely that this only happens for parameters

well away from common values – but they might still be

present in a large real network due to the spatial diversity of

its lengths and demands. The new OBF then, despite being a

clear economic vindication of the looped network (Martı́nez
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Figure 2 9999 Plot of Equation (11) for one-loop network and cases (a) and (b).
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2007, 2010), is not free from certain drawbacks when the

intention is to find the global optimum.

TWO STAGES

The main purpose of the foregoing discussion was to demon-

strate the inconvenience of the search for the global optimum

in the classical sense. Particularly when the optimization

procedure uses diameters as decision variables it is perhaps

not possible to avoid that kind of search. The alternative of

including reliability as an additional constraint in the dia-

meters search has not been fully successful because reliability

under most existing definitions cannot make a distinction

between looped and branched networks. But even if it could

make the distinction that approach would keep the uncer-

tainty as to the quality (optimality) of the solution.

In order to practically eliminate the uncertainty about the

optimality of the solution and, at the same time, to get both

non-convexity and multimodality out of the way, a two-stage

approach was proposed by Chiong (1985) formulating the

problem in terms of separated sets of flows and heads.

The stages are: (1) calculate flows in pipes only as a

function of demands looking for the maximum flow unifor-

mity; (2) given all pipe flows calculate nodal heads to obtain

minimum cost using Equation (1) as the OBF and the usual

constraints. Chiong (1985) introduced the principle of mini-

mum variance to calculate the flow distribution in the first

stage. This principle has a unique global minimum for any

network. Flow uniformity not only prevents the ‘‘opening’’ of

the loops but also is relevant for the sake of reliability; for this

reason researchers have frequently dealt with pipe flow

distribution, other arguments and citations can be found in

Martı́nez (2007) and Gupta et al. (2008).

The variance VQ of a set of N values of Q flows can be

calculated as

VQ ¼ N�1
XN
j¼1

Q2
j

0
@

1
A� N�1

XN
j¼1

Qj

0
@

1
A

2

ð12Þ

where N is number of pipes in the network and Qj is flow in

any pipe j.

Recall that on each loop any one of its pipe flows can

be selected as independent variable. The other pipe flows

belonging to the loop are then a function of the selected one.

After substitution of nodal flow Equations (3) for all loops,

and calculating derivatives with respect to each selected-as-

independent loop pipe flow, the result is Equation (13) for

each loop. Calculation of second derivatives shows that this is

a global minimum:

X
k2Loop

Qk ¼ 0 for each loop: ð13Þ

As stated in Equation (13) the flows involved are of

course those in pipes belonging to the loop. These flows

have a sign according to the usual loop convention: clockwise

is positive.

The second stage produces also a unique global minimum

because, if the flows are given, the problem is convex and

unimodal as has been shown elsewhere. Therefore, the two-

stage approach is a straightforward procedure that can pro-

duce a unique, global, reproducible solution.

In spite of these advantages, the described approach was

not able to realize the economic advantages of the looped

network. This was introduced just recently as Equation (8)

(Martı́nez 2007) where not only the advantages of the looped

network are brought into light but also a methodology is

proposed to obtain optimal reliability level as well as the

optimal design demand based on cost analysis (Martı́nez

2010).

Then the proposed two-stage approach fulfills the char-

acteristics stated before as follows:

� an adequately redundant, looped network is obtained; this

is accomplished by the first stage with the flow distribution
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Figure 3 9999 Alternative plot of Equation (11).
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and completed by the second stage where the choice of

diameters takes into account the failure frequency.
� the solution is a unique, reproducible solution; the first

stage gives a unique solution and so does the second stage.
� the solution is a global optimum under certain circum-

stances; the result of each stage is a global optimum, the

first is a sort of statistical optimum while the second is an

economic one.
� it is suitable for large networks; the example in Martı́nez

(2007) suggested this possibility and recently the author

tested a 184-node, 273-pipe, 90-loop network for one

design demand in 4.5 minutes of a Pentium 4 type personal

computer.

There is one drawback though and it is the need for

diameter rounding to discrete commercial values. This is a

minor drawback if the available commercial diameter set is

‘‘tight’’. It is perhaps only natural if one might like to add a

third stage: find the discrete diameters by applying an evolu-

tionary or integer-programming algorithm, now with only

two diameters per pipe reach. This of course could be the

subject of future research.

THE ENTROPY APPROACH

The idea of uniform flow distribution has also been analyzed

by other researchers in association with the maximum

entropy principle (Awumah et al. 1991; Tanyimboh & Tem-

pleman 2000).

Goulter & Bouchart (1990) used an approach with a fixed

flow distribution but they did not say how it was obtained.

Awumah et al. (1991) use an entropy formulation based on

inflows to nodes in an optimization model and apply it to the

same example of Morgan & Goulter (1985) with a constraint

enforcing a minimum entropy level and giving a split-pipe

type solution. This approach should be considered at least

doubtful because the results are very close to the original

example, which was found to be highly infeasible by Afshar

et al. (2005). Nevertheless, the entropy inflow formulation,

from a practical viewpoint, would seem to be more redun-

dancy-related than the outflow formulation.

A two-stage approach can be applied if maximum entropy

is used as the uniform flow distribution generator. This

was done by Tanyimboh & Templeman (2000) together

with a NLP routine as their second stage which gives con-

tinuous diameters as the final solution. They also have

proposed a different two-stage approach where the second

stage would be the Alperovits & Shamir (1977) LP split-pipe

solution. Their entropy formulation is based on outflows

from nodes.

The main disadvantage here is that if the first stage is

based on entropy, the result is multimodal (Ang & Jowitt

2005) because entropy can only be calculated after the flow

directions are given. Outflow-based entropy drawings are

shown in Figure 4, one for the network of Figure 1 and the

others for each of its nodes. In the network drawing three

maxima can be observed corresponding to the three possible

flow directions, the one shown in Figure 1 and the others

when either Q2 or Q4 flows are reversed. It is interesting to

notice that entropy is not zero at the points where any one

flow is zero. This is because, even if some flow is zero, there

is always one node that has two outflows. These zero-flow

points correspond to branched versions of the network

showing their large entropy values. Calculating the propor-

tion between these branched versions entropy points and the

maximum in this figure, it gives about 80%. A similar value is

obtained from an example in Ang & Jowitt (2005) as well as

from other tests made by the author. So this entropy is not

only not zero in a branched network but it seems to be a large

part (about 75–80%) of the total entropy of the associated

looped network.

The drawing for source node A shows a maximum and

two zeros when either Q1 or Q3 flows are zero. The drawings

for the other nodes show segments of zero entropy corres-

ponding to the interval in which the node only receives water,

i.e. has no outflow pipe. Except for node A, which is the

source, maximum nodal entropy occurs at points of null flow.

Another shortcoming is that, for large networks, several

nodes might have only one outflow, which means a zero

entropy value, even when those nodes may have two or more

inflowing pipes.

The multimodality of network entropy is considerable,

notice that in most of its vertical range there are six flow

distributions with the same entropy value. For two or more

loops they are certainly infinite. For any classical optimiza-

tion with an entropy constraint this adds another dimension

to the already cumbersome multimodality. So far no method

has been proposed to find the global maximum entropy.
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Given all flow directions the calculation of flow values for

its local maximum entropy is very easy for one-source net-

works. But for two or more sources, contrary to the optimistic

statements of Yassin-Kassab et al. (1999), the same is not true.

Despite the well debated and clearly explained procedure for

finding the flow distribution of multi-source networks for

given flow directions, the examples presented are so small

that disadvantages could not be foreseen.

Let NS be the number of sources. The procedure involves

solving a set of NS-1 polynomial equations with NS-1

unknowns. The degree of each polynomial is equal to the

number of demand nodes that are reachable from its corres-

ponding source. A small network may have, for instance, 15

demand nodes reachable from all sources. The more sources

in the network, the more complex the solution of polynomials

of degree 15 which indeed is not a trivial pocket calculator

solution.

Nevertheless, there might be another problem: the multi-

plicity of solutions because such a polynomial set may have

up to 15 (roots) sets of solutions. Some of them may be real

while others may be complex. If the real ones are multiple

then there is another multiplicity drawback, which originates

within the specifically given flow directions. The problem of

maximizing entropy for multi-source networks with given
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Figure 4 9999 Entropy for one-loop network and nodes.
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flow directions may have a unique solution but this short-cut

procedure may not represent a much easier approach to

obtain it in a large network with several sources.

As compared to entropy based criteria, the principle of

minimum variance has several advantages (Martı́nez 2007) to

achieve maximum flow uniformity: (a) there is an explicit

comprehensive statistical measure of uniformity; (b) the flow

solution is extremely easy to obtain; (c) the solution is unique;

(d) there is no need to assign flow directions (e) the solution

process is independent of the number of source nodes.

As an illustration, Table 1 shows a statistical comparison

of flow distribution calculated with maximum entropy and

minimum variance for two small networks. Network 1 is the

8-pipe example given as case A in Tanyimboh & Templeman

(1993a) and Network 2 is the 7-pipe example of Tanyimboh &

Templeman (1993b). In Table 1, except the mean value, the

other parameters are measures of dispersion. The original Q

values are expressed in liters per second (L/s). It is seen that

the comparison favors the minimum variance method.

EXAMPLE

In order to compare optimization results between flow dis-

tributions obtained from maximum entropy and from mini-

mum variance, an example is introduced. The example is

taken from Tanyimboh & Templeman (2000) where, for the

complete network layout shown in Figure 5, a solution is

given for maximum entropy flows and minimum capital cost.

The fixed flow direction for each pipe corresponds to the

numbering order of its two nodes.

This network has only one source at node 1 with total

head H¼ 100 m. In all other nodes ground elevation is zero

and minimum required pressure is 30 m. Pipes are all 1000 m

long and Hazen-Williams friction coefficient is C¼ 130.

Demands in liters per second for all other nodes are, orderly:

27.8; 41.7; 41.7; 41.7; 27.8; 55.5; 55.5; 55.5; 27.8; 41.7; 27.8.

Pipe cost per unit length is formulated with c1¼ 0.10, Z¼ 800

and m¼ 1.50. The original results of this example are given as

continuous diameters.

Optimization is now performed under Equation (8) as

OBF and constraint Equations (2)–(4). As stated before, the

flow distribution is calculated as a first stage by the principle

of minimum variance and then the second stage calculates

optimal heads and continuous diameters. The diameters are

then rounded to commercial values. Available commercial

values exist in multiples of 25 mm. Rounding assigns the

nearest upper commercial value unless the calculated

diameter is very near the nearest lower. Other parameters

for the new OBF are the same as the ones used in plotting

Equation (11).

Three alternatives are devised for comparing results. The

first is the original optimization (denoted here as T & T), the

Table 1 9999 Statistical comparison of flow distribution

Network 1 1 2 2

Method Maximum entropy Minimum variance Maximum entropy Minimum variance

Sum(Q2) 1334.40 943.75 67309.00 62853.40

Mean(Q) 11.146 9.375 80.429 80.429

Variance 42.572 30.078 3146.816 2510.302

Std. deviation 6.525 5.484 56.096 50.103

Coeff. of variation 0.5854 0.5850 0.6975 0.6229

3 2 1

6 5 4

7

10

8

11

9

12 

Figure 5 9999 Example network.
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second the new optimization with continuous diameters

(denoted JB-cont) and the third reflects rounding the latter

diameters to discrete ones (denoted JB-discr). A comparison

of dispersion in resulting flows and diameters is shown in

Table 2 for the three alternatives. The unique flow distribution

resulting from minimum variance has exactly the same flow

directions as the original example. No surplus head in the

critical node is allowed under the new optimization process.

Column (4) is for maximum entropy flows, column (5) is

for minimum variance flows and column (6) is for flows

obtained after diameter rounding. It is seen that the two

alternatives of the new optimization are less disperse than

Table 2 9999 Comparison of dispersion in flows and diameters

Pipe Node 1 node 2 T & T JB-cont JB-discr T & T JB-cont JB-discr

# # # Q(L/s) Q(L/s) Q(L/s) D(mm) D(mm) D(mm)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1 2 175.65 209.71 204.98 302 313 325

2 1 4 268.85 234.79 239.52 361 321 325

3 2 3 61.57 87.96 91.10 192 224 225

4 2 5 86.28 93.96 86.08 228 231 225

5 4 5 87.61 68.89 72.19 226 209 225

6 4 7 139.54 124.20 125.63 275 247 250

7 3 6 19.87 46.26 49.40 138 192 200

8 5 6 42.94 40.26 37.92 175 181 175

9 5 8 89.26 80.89 78.65 239 224 225

10 7 8 44.23 25.57 25.69 179 158 175

11 7 10 39.81 43.13 44.44 169 182 200

12 6 9 35.00 58.71 59.52 182 221 225

13 8 9 37.49 18.08 18.17 178 154 150

14 8 11 40.49 32.88 30.66 184 181 175

15 10 11 12.01 15.33 16.64 119 150 150

16 9 12 16.99 21.30 22.20 162 182 200

17 11 12 10.81 6.50 5.60 135 145 150

Mean 71.08 71.08 71.08 202.59 206.76 211.76

Variance 4637 4272 4282 4003 2645 2744

Std. deviation 68.09 65.36 65.44 63.27 51.43 52.38

Coeff. of variation 0.9579 0.9195 0.9206 0.3123 0.2487 0.2473

Table 3 9999 Cost comparison in $/year

Costs from Objective Function

Alternative Capital Failure Total Cost of Additional Shortfall Grand total

(1) (2) (3) (4) (5) (6)

T & T 128125 53687 181812 49412 231224

JB-cont 130577 50079 180656 47724 228380

JB-discr 135314 48412 183726 35698 219424

column (6)¼ column (4)þ column (5)
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the original solution. Similar comments can be drawn from

columns (7)–(9) which relate to dispersion of diameters.

The T&T alternative is evaluated for cost with the same

OBF, Equation (8). To complete the cost and reliability

comparison (Martı́nez 2007), each one of the three alterna-

tives is then analyzed with a pressure-driven simulator as

many times as there are pipes (17 in this case) considering

one pipe broken at a time. Average network-wide additional

shortfall is obtained and its cost computed with the same

price for water in the OBF. Additional energy costs were

found negligible. Table 3 shows the cost comparison. Col-

umns (2)–(4) are costs from OBF. Capital cost increases and

failure cost decreases with increasing average diameter. Total

OBF cost is less for the second alternative and higher for the

third. When the cost of additional shortfall is added the best

alternative is the third.

Several reliability parameters are shown in Table 4.

Columns (2) and (3) add up to 100% and are estimated

from pipe failure frequency. Using shortfall calculations a

nodal reliability is obtained as the expected fraction of

satisfied demand in the node. Column (4) is the geometric

mean of nodal reliabilities while column (5) is the volumetric

reliability of the whole network. Volumetric reliability is

obtained considering all nodes, it is the expected fraction of

satisfied demand in the whole network. Column (6) shows

the expected fraction of time that at least 90% of demand will

be fulfilled.

Although the results of the three alternatives are very

close to one another, the two alternatives from the proposed

approach are slightly better.

CONCLUSIONS

A discussion about the inconvenience of the search for the

global optimum in the classical sense has been introduced.

When diameters are used as decision variables it is perhaps

not possible to avoid that kind of search. The alternative of

including reliability as an additional constraint in the dia-

meters search has not been fully successful and in any case

keeps the uncertainty as to the quality (optimality) of the

solution.

A two-stage approach was presented formulating the

problem in terms of separated sets of flows and heads. This

approach practically eliminates the uncertainty about

the optimality of the solution and gets rid of non-convexity

and multimodality. It is also a clear economic vindication of

the looped network (Martı́nez 2007, 2010).

A critical study of the entropy approach shows its inher-

ent drawbacks. A comparative example demonstrates that the

proposed approach, besides the advantages in using the

principle of minimum variance, is quite competitive as con-

cerns uniformity of flow distribution, uniformity of diameters,

cost and reliability.
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