Reprogramming *Hansenula polymorpha* for penicillin production: expression of the *Penicillium chrysogenum pcl* gene

Loknath Gidijala, Ida J. van der Klei, Marten Veenhuis & Jan A.K.W. Kiel

Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) University of Groningen, Haren, The Netherlands

Correspondence: Jan. A.K.W. Kiel, Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, PO Box 14, NL-9750 AA Haren, The Netherlands. Tel.: +31 50 3632218; fax: +31 50 3632154; e-mail: j.a.k.w.kiel@rug.nl

Received 18 November 2006; revised 2 February 2007; accepted 3 February 2007. First published online 10 April 2007.

DOI: 10.1111/j.1567-1364.2007.00228.x

Editor: Gerd Gellissen

Keywords
β-lactam antibiotics; filamentous fungi; genetic engineering; microbody; PTS1 receptor.

Abstract
We aim to introduce the penicillin biosynthetic pathway into the methylo trophic yeast *Hansenula polymorpha*. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host–vector system based on methionine auxotrophy and the *H. polymorpha* MET6 gene, which encodes a putative cystathionine β-lyase. With this new host–vector system, the *Penicillium chrysogenum pcl* gene, encoding peroxisomal phenylacetyl-CoA ligase (PCL), was expressed in *H. polymorpha*. PCL has a potential C-terminal peroxisomal targeting signal type 1 (PTS1). Our data demonstrate that a green fluorescent protein–PCL fusion protein has a dual location in the heterologous host in the cytosol and in peroxisomes. Mutation of the PTS1 of PCL (SKI-COOH) to SKL-COOH restored sorting of the fusion protein to peroxisomes only. Additionally, we demonstrate that peroxisomal PCL–SKL produced in *H. polymorpha* displays normal enzymatic activities.

Introduction
Penicillin and its derivatives are the oldest known chemotherapeutic agents that are used against various bacteria. Penicillin belongs to the β-lactam family of antibiotics. The penicillin biosynthetic pathway in the filamentous fungus *Penicillium chrysogenum* has been well characterized both genetically and biochemically (Liras & Martin, 2006). In *P. chrysogenum*, this pathway is partly compartmentalized, and involves the action of the nonribosomal peptide synthetase δ-(L-α aminoacidyl)-L-cysteinyl-0-valine synthase and isopenicillin-N-synthase, which are present in the cytosol. These enzymes catalyze the first steps in β-lactam biosynthesis. In addition, the enzymes required in the final steps in penicillin biosynthesis, acyl-CoA:isopenicillin-N-acyltransferase (IAT) and phenylacetly-CoA ligase (PCL), are located in microbodies (reviewed by van de Kamp et al., 1999).

Microbodies (peroxisomes, glyoxysomes, glycosomes, Woronin bodies; in the remainder of the text, designated peroxisomes) are important organelles that are present in all eukaryotic cells. These organelles contain a protein-rich matrix consisting of enzymes involved in highly diverse metabolic pathways, such as plasmalogen biosynthesis in mammals, photorespiration in plants, glycolysis in trypanosomes, the primary metabolism of various unusual carbon sources, as well as penicillin biosynthesis in certain filamentous fungi (van den Bosch et al., 1992).

We aim to introduce the penicillin biosynthetic pathway into the methylo trophic yeast *Hansenula polymorpha*. Yeast species have the advantage of being versatile, and easy to handle and cultivate. The use of a yeast model system provides information on the actual requirements of the penicillin biosynthetic pathway. Additionally, it enables easy manipulation of the penicillin biosynthetic pathway for the production of novel antibiotics. *Hansenula polymorpha* has been successfully developed as a host for the production of foreign proteins (Hollenberg & Gellissen, 1997). *Hansenula polymorpha* has the added advantage that the number and volume fraction of peroxisomes can be readily regulated, allowing better control over peroxisomal enzymes and their function (van der Klei et al., 1991).

Proper sorting of the peroxisome-borne enzymes IAT and PCL to the correct destination in the yeast host is of crucial importance in this metabolic reprogramming scheme. This has already been achieved for *P. chrysogenum* IAT. When produced in *H. polymorpha*, IAT is correctly sorted to peroxisomes and functionally active (Lutz et al., 2005). In the current work, we introduced the *P. chrysogenum pcl* gene...
into *H. polymorpha* using a novel host–vector system, and determined the subcellular location and activity of the heterologously produced protein.

Materials and methods

Microorganisms and growth conditions

The strains used in this study are listed in Table 1. All *H. polymorpha* strains are derivatives of NCYC495 (Gleeson & Sudbery, 1988), and were grown at 37 °C in either (1) rich complex media (YPD) containing 1% yeast extract, 1% peptone and 1% glucose, (2) selective media containing 0.67% yeast nitrogen base without amino acids (DIFCO) supplemented with 0.5% glucose (YNM), or (3) mineral medium (MM) as described by Van Dijken et al. (1976), supplemented with 0.25% ammonium sulfate, using 0.5% glucose or 0.5% methanol as carbon source. For growth on plates, 2% granulated agar was added to the media. Whenever necessary, media were supplemented with 30 μg mL⁻¹ leucine, 30 μg mL⁻¹ uracil, 20 μg mL⁻¹ adenine, and 20 μg mL⁻¹ methionine. For biochemical analysis, selected strains were precultured for at least three rounds in MM containing glucose, and subsequently shifted to MM containing methanol to induce expression of genes under the control of the alcohol oxidase (AO) promoter. For cloning purposes, *Escherichia coli* DH5α (Gibco-BRL, Gaithesburg, MD) was used, and grown at 37 °C in Luria—Bertani medium (1% Bacto tryptone, 0.5% yeast extract, 0.5% NaCl), supplemented with 100 μg mL⁻¹ ampicillin or 25 μg mL⁻¹ kanamycin when required.

Construction of *H. polymorpha* NCYC495 ade11.1 leu1.1 met6 ura3

To obtain a fourfold auxotrophic *H. polymorpha* strain, we crossed NCYC495 ade11.1 leu1.1 ura3 (Haan et al., 2002) with NCYC495 ade11.1 leu1.1 met6, using the procedure described by Gleeson & Sudbery (1988). This resulted in the isolation of strain NCYC495 ade11.1 leu1.1 met6 ura3.

Miscellaneous DNA techniques

The plasmids and primers used in this study are listed in Tables 1 and 2, respectively. All DNA manipulations were carried out according to standard methods (Sambrook et al., 1989). *Hansenula polymorpha* cells were transformed by electroporation (Faber et al., 1994). Chromosomal DNA was extracted from YPD-grown *H. polymorpha* cells as described by Sherman et al. (1986), but included an additional protein precipitation step using 5 M sodium chloride prior to DNA precipitation. DNA-modifying enzymes were used as recommended by the supplier (Roche, Almere, the Netherlands).

<table>
<thead>
<tr>
<th>Table 1. Strains and plasmids used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain/plasmids</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>DH5α</td>
</tr>
<tr>
<td>H. polymorpha</td>
</tr>
<tr>
<td>NCYC495 ade11.1 leu1.1 ura3</td>
</tr>
<tr>
<td>NCYC495 ade11.1 leu1.1 met6</td>
</tr>
<tr>
<td>NCYC495 ade11.1 leu1.1 ura3 met6</td>
</tr>
<tr>
<td>P. chrysogenum</td>
</tr>
<tr>
<td>DS17690</td>
</tr>
<tr>
<td>Plasmids</td>
</tr>
<tr>
<td>pYT3-MET6</td>
</tr>
<tr>
<td>pBluescript II SK<sup>+</sup></td>
</tr>
<tr>
<td>pHIPX4</td>
</tr>
<tr>
<td>pHIPX4-HNBESX</td>
</tr>
<tr>
<td>pSKMETS6</td>
</tr>
<tr>
<td>pHIPM4</td>
</tr>
<tr>
<td>pHIPM4-PCL</td>
</tr>
<tr>
<td>pHIPM4-GFP-PCL</td>
</tr>
<tr>
<td>pHIPM4-PCL.SKL</td>
</tr>
<tr>
<td>pHIPM4-GFP-PCL.SKL</td>
</tr>
</tbody>
</table>
Table 2. Oligonucleotide primers used in this study

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET6F</td>
<td>5'-AGAGGATCCGCCGACCCTTCATC-3'</td>
</tr>
<tr>
<td>MET6R</td>
<td>5'-GCCTAAAGGGGCGCTTTG-3'</td>
</tr>
<tr>
<td>PCL-1F</td>
<td>5'-CTAGGATCCTAGTTTTTTTACCTTCAAAGAGG-3'</td>
</tr>
<tr>
<td>PCL-3R</td>
<td>5'-AGTCTCGAGTCGACTTACAGCTTGCTACCAGCCTTC-3'</td>
</tr>
<tr>
<td>PCL-4R</td>
<td>5'-GGAGAGATGTCGACTCAGTCAGTGCAAGCGGCCTTC-3'</td>
</tr>
<tr>
<td>GFP-F</td>
<td>5'-CCCAAGCTTGAGTGAAGCAGAGGAGGAC-3'</td>
</tr>
<tr>
<td>GFP-R</td>
<td>5'-ATGCCATGCCCTGATCAAGCATCTGCATCG-3'</td>
</tr>
</tbody>
</table>

Netherlands). Pwo polymerase was used for preparative PCR. Southern blot analysis was performed with the ECL direct nucleic acid labeling and detection system (Amer sham Corp., Arlington Heights, IL). Oligonucleotides were synthesized by Life Technologies (Breda, the Netherlands). DNA sequencing reactions were performed at BaseClear (Leiden, the Netherlands). For DNA sequence analysis, the CLONE MANAGER 5 program (Scientific and Educational Software, Durham) was used. BLAST algorithms (Altschul et al., 1990) were used to screen databases at the National Center for Biotechnology Information (Bethesda, MD). The CLUSTAL_X program was used to align protein sequences (Thompson et al., 1997), and the GENEDOC program (available at http://www.psc.edu/biomed/genedoc) was used to display the aligned sequences.

Construction of plasmids

The novel H. polymorpha integration vector pHIMP4 was constructed as follows. First, a 2.0-kb DNA fragment comprising the H. polymorpha MET6 gene, including its regulatory sequences, was isolated by PCR with primers MET6F and MET6R (Table 2), using pYT3-MET6 as template, and cloned into SmaI-digested pBluescript II (SK +). From the resulting plasmid, designated pSKMET6, a 2.0-kb BamHI fragment containing HpMET6 was isolated and cloned into BglII-digested pHIPX4-HNBEX (a derivative of pHIPX4 (Gietl et al., 1994)), thereby replacing the ScLEU2 marker in this plasmid. The resulting plasmid was designated pHIMP4 (Fig. 2).

For the construction of plasmid pHIMP4-PCL, a BamHI site was introduced upstream of the P. chrysogenum pcl gene by PCR with primers PCL-1F and PCL-3R, using DNA from a P. chrysogenum cDNA library (Kiel et al., 2000) as template. The resulting 1.7-kb DNA fragment was digested with BamHI, and cloned between the BamHI and SmaI sites of pHIMP4, resulting in plasmid pHIMP4-PCL.

To construct pHIMP4-GFP-PCL, we amplified the GFP gene by PCR using primers GFP-F and GFP-R. The resulting 717-bp product was then digested with HindIII and NcoI, and cloned between the HindIII and NcoI sites of plasmid pHIMP4-PCL. The resulting plasmid, designated pHIMP4-GFP-PCL, contains an in-frame GFP–pcl fusion gene.

To enable optimization of the targeting of PCL to peroxisomes, we mutagenized the PTS1 signal of PCL (SKI-COOH) into SKL-COOH. To this end, the P. chrysogenum pcl gene was amplified by PCR with primers PCL-1F and PCL-4R, using pHIMP4-PCL as template. The resulting 1.7-kb DNA fragment, containing the pcl.SKL coding sequence, was inserted between the BamHI and SmaI sites of pHIMP4, resulting in plasmid pHIMP4-PCL.SKL. In addition, the same fragment was inserted between the BamHI and SmaI sites of pHIMP4-GFP-PCL, resulting in plasmid pHIMP4-GFP-PCL.SKL.

Integration of pHIMP4-derived plasmids into the MET6 locus of the H. polymorpha genome was achieved by transforming EcoRI-linearized plasmid DNA. Correct integration and copy number determination was analyzed by Southern blotting (data not shown).

Biochemical methods

Crude extracts of H. polymorpha and P. chrysogenum cells were prepared with glass beads basically as described by Waterham et al. (1994), using TANG buffer (50 mM Tris-HCl, pH 7.5, 0.02% sodium azide, 200 mM NaCl, 10% glycerol) instead of phosphate buffer. For Western blots, extracts of H. polymorpha and P. chrysogenum cells were prepared using the trichloroacetic acid (TCA) method (Baarends et al., 2000). Protein concentrations were determined using the Bio-Rad Protein Assay system and bovine serum albumin as standard. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting were performed using established procedures. Western blots were decorated with polyclonal antibodies raised in rabbit against a maltose binding protein (MBP)–PCL fusion protein produced in E. coli (a gift of M. Koetsier, Biochemical Laboratory, GBB, University of Groningen, the Netherlands).

Determination of PCL enzymatic activity

PCL activity was determined in crude cell extracts by measuring the rate of conversion of cinnamic acid to cinnamoyl-CoA at 30 °C, following the procedure of M. Koetsier et al. (unpublished results).

Morphologic analysis

Fluorescence microscopy studies were performed using a Zeiss Axioskop microscope (Carl Zeiss, Göttingen, Germany).

Results

Cloning of H. polymorpha MET6

Introduction of the P. chrysogenum penicillin biosynthetic pathway into H. polymorpha involves expression of the multiple P. chrysogenum genes of this pathway (Brakhage,
To allow the integration of multiple expression cassettes into H. polymorpha, a new vector utilizing the MET6 gene as a novel auxotrophic marker was first constructed. In order to isolate the H. polymorpha MET6 gene, we transformed strainNCYC495 ade11.1 leu1.1 met6 with an H. polymorpha genomic library in pYT3 (Tan et al., 1995). From a methionine prototrophic transformant, a plasmid with an insert of 6.1 kb was rescued in E. coli. Subsequent transformation ofNCYC495 ade11.1 leu1.1 met6 with the isolated plasmid confirmed its complementing ability. Initial DNA sequence analysis of the insert revealed the presence of an ORF with high similarity to the Saccharomyces cerevisiae STR3 gene product, which is involved in methionine biosynthesis. Subcloning confirmed that this gene can complement the methionine auxotrophy of H. polymorpha NCYC495 ade11.1 leu1.1 met6. Hence, we designated this gene H. polymorpha MET6. The sequence of H. polymorpha MET6 was submitted to Genbank and was assigned the accession number EF035078.

Hansenula polymorpha MET6 encodes a protein of 384 amino acids with a predicted molecular mass of 42 kDa. BLAST analysis showed highest similarity to cystathionine β-lyase (CBL), an enzyme involved in the conversion of cystathionine into homocysteine (Hansen & Johannesen, 2000). The H. polymorpha CBL protein is 43% identical to its S. cerevisiae ortholog. An alignment of selected CBLs from a number of organisms is shown in Fig. 1. The alignment demonstrates that the amino acids involved in catalytic activity and cofactor (pyridoxal 5'-phosphate) binding are well conserved in H. polymorpha CBL. Previously, it has been demonstrated that S. cerevisiae CBL localizes to peroxisomes (Schafer et al., 2001). Saccharomyces cerevisiae CBL contains a C-terminal SKL-COOH, a typical type 1 peroxisomal targeting signal (PTS1) (Purdue & Lazarow, 2001). Further analysis showed that orthologs from yeast species that are evolutionarily close to baker's yeast, i.e. Candida glabrata, Kluyveromyces lactis, Ashbya gossypii, C. albicans, and Debaryomyces Hansenii, also contain a putative PTS1 (data not shown). This suggests that, in these organisms, methionine biosynthesis is partly compartmentalized. Remarkably, the H. polymorpha CBL lacks a PTS1 (Fig. 1). In this respect, this protein more resembles CBL from Yarrowia lipolytica and filamentous fungi.

Construction of an H. polymorpha strain producing P. chrysogenum PCL

We utilized the H. polymorpha MET6 gene with its endogenous promoter and terminator regions as auxotrophic marker in the construction of a novel H. polymorpha integration vector, designated pHIPM4 (Fig. 2). This vector allows high-level expression of genes by the strong, inducible AO promoter (PAOX), and also contains the amine oxidase terminator (TAMO). Integration of pHIPM4 into the H. polymorpha genome can be facilitated by linearization in either the PAX or MET6 regions.

To fully explore the potential of pHIPM4, a fourfold auxotrophic strain, NCYC495 ade11.1 leu1.1 ura3 met6, was constructed. To demonstrate the use of this new host–vector system in metabolic engineering of H. polymorpha, we inserted the gene encoding P. chrysogenum PCL downstream from the PAX in pHIPM4. The resulting plasmid, pHIPM4-PCL, was then integrated at the MET6 locus on strain NCYC495 ade11.1 leu1.1 ura3 met6. Initially, a strain containing a single copy of the PCL expression cassette, designated PCL^{IC}, was analyzed further. Western blots, using crude extracts prepared from methanol-grown cells, decorated with α-PCL antibodies, demonstrated (Fig. 3, lanes 1–3) that strain PCL^{IC} produces high levels of a protein identical in size to P. chrysogenum PCL that was absent in wild-type controls. From this, we conclude that the novel host–vector system enables efficient production of heterologous proteins.

Localization of P. chrysogenum PCL in H. polymorpha

In P. chrysogenum, PCL localizes to peroxisomes (W.H. Meijer et al., unpublished results), probably via its PTS1 signal, SKI-COOH. In order to determine the subcellular location of PCL in H. polymorpha, we constructed strain GFP-PCL expressing a PAX-driven GFP–pcl fusion gene. Methanol-grown cells of this strain were analyzed by fluorescence microscopy. The data (Fig. 4a and b) indicate that in H. polymorpha, GFP–PCL has a dual localization. GFP fluorescence was observed in peroxisomes as a characteristic rim that surrounds the AO crystal (Veenhuis et al., 2000), but was also detected in the cytosol. To sort PCL completely to peroxisomes of H. polymorpha, the native PTS1 signal of PCL (SKI-COOH) was changed to SKL-COOH, which is a more efficient PTS1 signal (Reumann, 2004). In the resulting strain, GFP-PCL^{SKL}, GFP fluorescence was confined to peroxisomes (Fig. 4c and d).

PCL^{SKL} produced in H. polymorpha is active

For enzymatic activity determinations, the pcl^{SKL} gene was inserted into plasmid pHIPM4 and integrated with varying copy numbers into H. polymorpha NCYC495 ade11.1 leu1.1 ura3 met6. Strains containing one, two and multiple (more than three) copies of the expression cassette were selected. Western blot analysis demonstrated that these strains produced enhanced levels of PCL^{SKL} protein, corresponding to the number of expression cassettes integrated (Fig. 3, lanes 4–6).

PCL is involved in the activation of aromatic monocarboxylic acids by covalently adding CoA to the substrate (Ward & KE, 2005). We determined the enzymatic activity of PCL^{SKL}...
in methanol-grown cells of strains PCLSKL,1c, PCLSKL,2c and PCLSKL,mc with cinnamic acid as substrate, using \textit{H. polymorpha} host cells and \textit{P. chrysogenum} DS17690 cells as controls. The results (Table 3) indicated that crude extracts of the recombinant \textit{H. polymorpha} strains displayed PCL enzymatic activity levels that increased with increasing copy numbers of the \textit{pclSKL} expression cassette. PCL enzymatic activity was absent in the control host strain. The PCL activities detected in the \textit{H. polymorpha} recombinant strains were enhanced relative to the activities in \textit{P. chrysogenum} cells.

Discussion

Penicillin is normally produced by the filamentous fungus \textit{P. chrysogenum}. Introduction of the penicillin biosynthetic pathway into a yeast species is beneficial for overcoming the
difficulties of using *P. chrysogenum* in bulk fermentations, avoiding strain instabilities, reducing intracellular proteases, etc. The methylotrophic yeast *H. polymorpha* has been successfully developed as a host for the production of foreign proteins (Gellissen & Hollenberg, 1997). High-level protein production is facilitated by the availability of strong, inducible promoters (P_{AOX}, P_{FMD}) (van Dijk et al., 2000; Gellissen & Veenhuis, 2001). We aimed to utilize the favorable properties of *H. polymorpha*, via metabolic reprogramming, for synthesis of β-lactam antibiotics.

Penicillin biosynthesis requires the activity of multiple enzymes that are not available in *H. polymorpha*. To enable the use of multiple expression cassettes in this yeast, we first constructed a new host–vector system that consisted of an *H. polymorpha* strain carrying four auxotrophic markers and the novel integration vector pHIPM4, which contains the *H. polymorpha MET6* gene. This novel host–vector system provides an additional tool for efficient metabolic engineering of *H. polymorpha*. Its suitability was demonstrated by the efficient production of *P. chrysogenum* PCL.

Our data indicate that the new vector can integrate in single and multiple copies into the *H. polymorpha* genome.
Southern blot analysis has shown that among 32 randomly picked transformants, in 22 cases the expression cassette had correctly integrated into the MET6 locus. Of these, 64% contained one copy, 18% two copies and 18% multiple copies (three or more) of the expression cassette (data not shown). Thus, integration of varying copies of pHiPM4-derivatives allows efficient regulation of the expression level of a heterologous gene, as demonstrated by our expression data for pcl–SKL (Table 3 and Fig. 3).

In P. chrysogenum, the last steps in penicillin production, side chain activation and attachment of the activated side chain to the β-lactam backbone, are performed by the peroxisomal enzymes PCL and IAT, respectively (Muller et al., 1992; Lamas-Maceiras et al., 2006). Both proteins contain a PTS1 (PCL, SKI-COOH; IAT, ARL-COOH), indicating that sorting to P. chrysogenum peroxisomes requires the PTS1 receptor, Pex5p (Holroyd & Erdmann, 2001). Previously, we have demonstrated that IAT produced in H. polymorpha completely localizes to peroxisomes (Lutz et al., 2005), implying efficient recognition of its PTS1 by H. polymorpha Pex5p. In contrast, our localization studies of GFP–PCL provide evidence that this protein is not efficiently sorted to peroxisomes of H. polymorpha. In P. chrysogenum, PCL completely localizes to peroxisomes (W.H. Meijer et al., unpublished results). This suggests that P. chrysogenum Pex5p binds the PTS1 of PCL much more effectively than its H. polymorpha ortholog. Such differences in recognition of PTS1 sequences by different Pex5 proteins have been observed before (van der Klei et al., 1995; Neuberger et al., 2003). Alternatively, endogenously produced PCL may contain an additional binding site(s) for P. chrysogenum Pex5p that enables its efficient sorting to P. chrysogenum peroxisomes, and that is not recognized by H. polymorpha Pex5p. An analogous situation was observed in an H. polymorpha pex5 strain producing P. chrysogenum Pex5p (Kiel et al., 2004). In this study, P. chrysogenum Pex5p was unable to sort endogenous AO into peroxisomes, whereas other PTS1 proteins (including GFP–SKL) were efficiently imported. Presumably, P. chrysogenum Pex5p does not recognize the highly efficient, alternative PTS that resides in the AO molecule (Gunkel et al., 2004; Kiel et al., 2004). Thus, both Pex5p receptors have certain unique features. Nevertheless, efficient sorting of PCL to peroxisomes of H. polymorpha could be established when the PTS1 signal of the protein was changed to the canonical SKL-COOH. This confirms that the low efficiency of targeting of PCL in H. polymorpha was not caused by significant structural changes in the C-terminus of the protein that may have precluded binding of H. polymorpha Pex5p.

Our data show that H. polymorpha strains containing varying copies of the pcl–SKL expression cassette may produce significantly higher levels of enzymatic activity than observed in P. chrysogenum. Previously, it was shown that overproduction of PCL in P. chrysogenum significantly increased penicillin production (Lamas-Maceiras et al., 2006). This suggests that the endogenous levels of PCL in P. chrysogenum may not be optimal for efficient penicillin production. In H. polymorpha, such an optimization of PCL–SKL levels can easily be obtained, because multiple expression systems are available.

In conclusion, our data demonstrate that, in addition to P. chrysogenum IAT, PCL–SKL can also be produced in H. polymorpha in a functionally active form, and is properly targeted to peroxisomes. This provides new possibilities for the metabolic reprogramming of H. polymorpha to produce penicillin.

Acknowledgements

L. Gidijala and J.A.K.W. Kiel are financially supported by the Netherlands Ministry of Economic Affairs and the B-Basic partner organizations (www.b-basic.nl) through B-Basic, a public–private NWO-ACTS programme (ACTS, Advanced Chemical Technologies for Sustainability). We thank Martijn Koetsier for the gift of α-MBP–PCL antibodies. We gratefully acknowledge Martijn Koetsier and Elena Kurbatova for expert technical assistance.

References

Expression of P. chrysogenum pcl in H. polymorpha

