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Equations(4) and (5) in the paper are written in the forms displacement shown in Eq2) is also a wrong expression.
an o an o —, 3 In Eq. (3) an indefinite integral is used to express the stress
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analytic function. Therefore/{")(z) in Eq. (1) is a wrong expres- P(xY) = 9q(x.y) or (7q(x,y)_ P(x,Y) =0. ©)
sion. ady 28 28 4%
2 In the complex variable function method, the displacement o
components can be expressed[23) If Eq. (3) were true, substitutingp(x,y)=—o7;,/2 and
q(x,y) = 0ij «/2 into Eq.(9) yields the following:
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whereG is the shear modulus of elasticity= (3~ v)/(1+v) IS 1y, ever, the stress componentg are not a harmonic function
for the plane stress problems,=3—4v is for the plane strain .

problem, andv is the Poisson’s ratio, angd(z) and y(z) are two " 9eneral. Thus, ther’ shown by Eq.(3) is also a wrong ex-
analytic functions. pression.
Equation(4) reveals a rule that in a real displacement expres-
sion of plane elasticity, if the function after the elastic constant
is ¢(z), the term aftez in Eq. (4) should be—¢’'(2). References
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C. J. Lissenden
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The Pennsylvania State University, 212 Earth-Engineering The pressure-dependence of 1100 and 2024-T351 is similar, but
Sciences Building, University Park, PA 16802 2024-T351 exhibits a strength-differential @ of 5.9%, while
1100 does not exhibit an appreciable strength-differential. While

The author correctly identifies the backbone of metal plasti(:ittv¥vIlson did not measure volume change, Spitzig and Richmond

as the Mises vield criterion. the Prandt-Reuss flow law. an id, and found there to be no significant dilation; indicating that
isotropic/kinemgtic hardenind However. there has always: be ﬁ associated flow rule will not correctly predict plastic strain.
the qualification that these simplifications of plasticity work weI{ is is also the case for frictional materials, where it is common

for “most metals” or “some metals.” It is noteworthy that while "° employ a nonassociated flow rule.
y y We have observed strength-differential in laboratory experi-

the author has devoted a section of his paper to Richmond's W%‘%nts using aged Inconel 718 precipitation strengthened nickel-

refuting the widespread use of the assumption of pressute- i .
- ; . se alloy ([2,3]), 6061-T6 aluminum and 6092/SiC/17.5-16
independent flow in metals, he did not reference the keystoB rticulate reinforced aluminum allpy{4]). The Mises yield cri-

work of Spitzig and RichmonflL], where they provide additional terion does not apply well to these materials either. Our work on

results for 1100 aluminum. This would have further reinforced hi\f1conel 718(3)) indicates that a,-J; yield function, which we

D o e e gl freshold fnction becase e e woring i th ream
strength-differential means a tension-compression asymmeféyfvz';cgﬂ%sﬂﬂm gllgggwtgse rlrl1noesst ggittg%tlg)roposed by Drudir

(e.g., compressive yield strength larger than tensile yield . Lo 2 X S .
AT : : Finally, while it is fairly obvious, it is worth pointing out that
strength, which is different from a Bauschinger effect. The yI(aldche Drucker-Prager yield criterion predicts more flow for the same

function that Spitzig and Richmond used can be written in ﬂ}%nsile stress than the Mises yield criterion simply due to the

forms presence of the positiig term. Thus, the finite element results of
f=al,+3J,—c Wilson for Mises and Drucker-Prager yield criteria are self-
consistent. It would be interesting to know the rangd ofor a
\/3_.]2 particular notch geometry.
f=al,+ -1

wherel, andJ, are the usual stress invariants ameka/c, a is

the pressure coefficient, and is the strength coefficient. The
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