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ABSTRACT

An ‘‘all pipes’’ hydraulic model of a drinking water distribution system was constructed with a

bottom-up approach of demand allocation. This means that each individual home is represented

by one demand node with its own stochastic water demand pattern. These water demand

patterns were constructed with the end-use model SIMDEUM. A sensitivity test with respect to

the resulting residence times was performed for several model parameters: time step, spatial

aggregation, spatial correlation, demand pattern and number of simulation runs. The bottom-up

approach of demand allocation was also compared to the conventional top-down approach,

i.e. a single demand multiplier pattern is allocated to all demand nodes with the base

demand to account for the average water demand on that node. The models were compared

to measured flows and residence times in a small network. The study showed that the

bottom-up approach leads to realistic water demand patterns and residence times, without

the need for any flow measurements. The stochastic approach of hydraulic modelling,

with a 15 minute time step, some spatial aggregation and 10 simulation runs, gives insight

into the variability of residence times as an added feature beyond the conventional way

of modelling.
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INTRODUCTION

The goal of drinking water companies is to supply their

customers with good quality drinking water 24 hours a day.

With respect to water quality, the focus has for many years

been on drinking water treatment. Recently, interest in the

water quality of a drinking water distribution system (DWDS)

has been growing. Water age is an important aspect of water

quality in a DWDS as it influences disinfectant residual,

disinfection by-products, nitrification, bacterial regrowth,

corrosion, sedimentation, temperature, taste and odour

(EPA 2002). More specifically, the maximum water age (or

residence time) is most important (Machell et al. 2009).

The key element of a water quality model for a DWDS is

a detailed hydraulic model (Slaats et al. 2003; Vreeburg 2007),

which not only takes into account the maximum flows but

also the flows at the preceding time steps (Slaats et al. 2003;

Powell et al. 2004; Vreeburg & Boxall 2007). A hydraulic

model with an accurate simulation of the occurrence of

turbulent and laminar flow and stagnant water is needed.

Therefore, knowledge of the water demand on a more

detailed level is essential (Blokker et al. 2008). The required

detail in temporal and spatial scale is to be determined. This

paper will investigate the required detail.
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One way of improving a model’s accuracy is by calibra-

tion. Calibration is usually done with pressure measurements

by adjusting wall roughness coefficients and status of valves,

for which several optimization techniques are available

(Kapelan 2002). For this calibration a discernable head loss

is required; in the periphery of the drinking water distribution

system, where velocities and head losses are low, calibration

on pressure is almost impossible. Jonkergouw et al. (2008)

showed that calibration of demands can be done by using

water quality measurements (in their case chlorine levels).

They concluded that average daily demands can be deter-

mined with high precision, but that substantial measurement

errors in the calibration data (i.e. water quality data) do not

allow for an accurate calibration of the demand multiplier

patterns (DMP) that construct the diurnal pattern. Pasha &

Lansey (2010) have shown that water quality predictions of

residual chlorine in a DWDS are very sensitive to uncertainty

in demand and the bulk and wall reaction coefficients, and

hardly sensitive to pipe diameter and wall roughness. Cali-

bration of diameter and wall roughness by means of pressure

measurements may therefore not be required. Water quality

measurements are preferably used for calibration of reaction

coefficients but not for calibration of demands.

Modelling water quality in the DWDS requires a different

approach in demand allocation, where the demands show

less auto- and cross-correlation and are determined on smal-

ler temporal and spatial scales than the conventional ‘‘top-

down’’ approach of demand allocation (Blokker et al. 2008).

Here, top-down demand allocation means that a DMP (e.g.

measured at the pumping station) is allocated to the demand

nodes with a base demand to account for the average water

demand on that node, thereby applying strongly spatially

correlated water demand patterns among all nodes. A differ-

ent way is to use a ‘‘bottom-up’’ approach of demand alloca-

tion. This means that unique stochastic water demand

patterns are modelled for each individual home for each

day of the week, and a unique water demand pattern is

constructed for each demand node by summation of

the individual household water demand patterns. In the

traditional approach of top-down demand allocation the

cross-correlation is assumed to be equal to 1 and the auto-

correlation is usually high because a time step of 15 min or

1 h is used. A cross-correlation of 1 results in a limited

number of flow direction reversals in a network model.

A high auto-correlation means that the flow over the day is

relatively constant and the model will show no periods with

stagnant water and possibly a limited period of turbulent flow.

In case the actual flows are not strongly correlated, flow

direction reversals (in looped networks) and periods of

stagnancy and turbulent flows will occur. A traditional

approach in demand allocation may therefore underestimate

maximum residence times and dispersion.

The hypothesis is that a bottom-up approach of demand

allocation results in a model with realistic demands, which

show more resemblance with real demands with respect to

instantaneous peak values and diurnal variability, and there-

fore leads to realistic residence times. The hypothesis is tested

by comparing this bottom-up approach against the traditional

top-down approach and to measurement results of a tracer

study with a conservative compound. The bottom-up demand

allocation was done with the use of the end-use model

SIMDEUM (Blokker et al. 2010b). This paper presents a

sensitivity test for several model parameters. The influence

on modelled residence time was tested of the following

parameters: demand pattern time step, spatial aggregation

of demands, spatial correlation of demand patterns and the

shape of the demand pattern. The bottom-up approach is a

stochastic modelling approach and each simulation will give

different results. The number of simulation runs that is

required was also investigated. For this purpose a small

DWDS was selected as a test area. The DWDS was operated

in its normal looped layout. In order to reduce the effect of

mixing, the DWDS was also operated in a branched layout. In

order to limit the measurement time and the effect of stagnant

water on tracer dispersion, an extra flow was generated in the

DWDS. A second study (Blokker et al. 2010a) is concerned

with the practical implications of the bottom-up approach of

demand allocation in a real DWDS.

A bottom-up approach of demand allocation leads to

larger hydraulic models with more nodes, more pipes and

more numerous demand patterns. Using a smaller time step,

means that simulations take longer. As the demand patterns

are the results of a Monte Carlo simulation, multiple simula-

tion runs are required to understand the variability of the

results. This study aims to understand what level of detail is

required and what model simplifications and reductions are

acceptable. In this way the total simulation time can be

controlled.
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METHODS AND MATERIALS

Generic methodology

A small distribution network was selected as a test area. In

this network, the total water demand was measured and a

tracer study was performed to determine the residence time

towards three locations in the network. The network was

operated in two different ways, viz. in a looped and a

branched layout, and a continuous flow of 400 L/h was

extracted.

An ‘‘all pipes’’ hydraulic model was constructed with a

bottom-up approach of demand allocation of individual and

unique stochastic demand patterns. A second model was

constructed with a conventional top-down approach of

demand allocation with a common DMP. The model results

were compared with respect to the measured flow and

residence time. A sensitivity test was done for the models.

Demand patterns with various time steps were applied;

demand patterns were allocated at the household connection

and aggregated on the modelled pipe ends; different sets of

demand patterns were applied.

The network

The selected network is situated in the town of Benthuizen in

the west of the Netherlands (near The Hague). The network

was built in the mid-1970s and consists of 580 m of

Ø100 mm asbestos cement pipes, 380 m of Ø110 mm,

Ø63 mm and Ø50 mm PVC pipes, and 70 m of Ø80 mm

lined cast iron pipes and supplies 144 homes (Figure 1). The

pipes have well defined internal diameters and wall rough-

nesses. The annual water use in the network was determined

from the water meter readings of 2004 of the Water Company

Dunea. On average, 314 L per home per day was registered.

This was confirmed by flow measurements in 2004 on a district

metered area (DMA) of ca. 1200 homes (Beuken et al. 2006)

which encloses the network under study. The 2006 study also

showed that this network has no leaks. The supply area

Vlietregio, in which Benthuizen is located, supplies ca.

16,000 (mainly residential) connections; its flow is continu-

ously measured. The measured water demand patterns of this

supply area of the period 21–30 July 2007 are indicated by

DMPPS, where PS stands for pumping station.

The drinking water was distributed without any disinfec-

tant, as is common in the Netherlands. A tracer study with

NaCl was performed between 24 and 30 July 2007. Some

valves were permanently closed during the measurement

period to isolate the area from the rest of the DWDS. Two

other valves (0033 and 0035) were operated to set the net-

work layout to either a branched or a looped system. The

valves were closed from Tuesday 24 to Thursday 26 July;

they were open from Friday 27 to Sunday 29 July. Because

dispersion could have a large effect on water quality model-

ling (Li 2006) the Taylor dispersion in the network was

limited by applying an additional demand of 520 L/h. This

measure ensured the absence of stagnant water and an

average Reynolds number of 5500, i.e. a turbulent flow during

most of the day.

Measurement setup for the tracer study

Four measurement locations were selected (Figure 1). Loca-

tion 1 is located at the entrance of the isolated test area.

Locations 2, 3 and 4 are located on the central Ø100 mm AC

main. Note that in the branched network layout, the water

travels from location 1, to 2, to 3 and then to 4. In the looped

network layout, this is not necessarily the case.

Sodium chloride (NaCl) was used as a tracer and the

electrical conductivity was measured; from these measure-

ments, the residence time was determined. NaCl has several

advantages for use as a tracer, namely at a well measurable

dosage, it causes no disruption or health risk to customers; it

yields results of good accuracy and it is low-cost (Skipworth

et al. 2002). At location 1, NaCl was dosed to a fixed

concentration in order to raise the electrical conductivity

(EC, in mS/m) by a measurable amount: EC E44 mS/m

without dosage, and EC E58 mS/m with dosage. The tracer

was dosed in pulses of four hours on and four hours off. This

means that, per day, six positive and six negative step inputs

were induced.

In order to reach a fixed concentration, the flow was

measured (EndressþHauser Promay W) and the dosage was

controlled. A static mixer ensured a constant concentration of

the tracer over the pipe cross-section. To overcome the head

loss through the static mixer and to establish a fixed head, a

pump was placed at location 1. The instantaneous flow was

logged every minute; this resulted in five full days of flow
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measurements at location 1 (3 weekdays, 2 weekend days).

The measured flow patterns were converted into an average

DMP for weekdays and one for weekend days, which is

denoted DMPREF.

At all four locations, the EC was measured (LIQUISYS M

CLM223). The monitoring systems required a continuous

40 L/h extraction at the measurement locations. An extra

400 L/h was extracted at location 4 to ensure turbulent flows

during most of the day.

The residence time between location 1 and 2, 3 and 4

respectively was determined from the time between the cen-

tres of the ascending and descending tails (at ca. 51 mS/m)

of the measured EC pulses. Because dispersion was limited,

the pulses retained their shapes. Figure 2 shows for the

branched layout that at 15:12 the residence time between

location 1 and 2 was equal to 0.5 h; at 18:37 the residence

time between location 1 and 2 was equal to 0.3 h.

The residence time varies over the day and between days.

Figure 1 9999 Network layout. Water enters at location 1; a continuous demand of 400 L/h was extracted at loc. 4. Valves 0033 and 0035 are closed in the branched layout and open in the looped

layout. Valve 0035 is placed at the 80 mm CI main.
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This variation is considered in both the measurements and

the hydraulic model.

Hydraulic model and demand allocation

Wallingford’s InfoWorkss was used as a hydraulic network

model solver. Basically, two models were constructed that are

distinguished by demand allocation. ModelTD is the model with

the top-down approach of demand allocation; ModelBU is the

model with the bottom-up approach of demand allocation.

Each of the 144 homes was defined as a customer point

(the InfoWorks entity that comprises water demand) and

these customer points were connected to nodes on the

mains. The hydraulic model ModelTD has consolidated

demand nodes at pipe ends and junctions (the open circles

in Figure 1). The hydraulic model ModelBU has unique

individual demand nodes for all homes; the demand nodes

are located at the stop taps of the homes (depicted by the

connecting lines between demand nodes and distribution

mains in Figure 1).

The measurement locations 1, 2, 3 and 4 were assigned a

continuous extraction of 40, 40, 40 and 400 L/h respectively.

The demand allocation at the customer points was done in

two ways:

� In ModelTD an identical DMP was allocated to all

customer points with a correction factor to account for

the average demand per day. The utilized DMP are

(a) DMPPS, (b) DMPREF and (c) DMPSIM (Table 1). The

average demand of each customer point was assigned

based on the water meter reading of 2004.
� In ModelBU a unique stochastic water demand pattern

was assigned to each individual customer point. This is

described in more detail in the next section.

In accordance with the measurement period, the

branched system was modelled with weekday patterns; the

looped system was modelled with weekend patterns.

The water demand patterns of the individual homes were

generated on a 1 s time base. The generated water demand

patterns were time averaged over different time scales before

assigning them to the individual customer points in the

hydraulic model. The hydraulic model was run with a hydrau-

lic time step equal to the pattern time step, which was set to

1 min, 15 min and 1 h in different computer runs.
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Figure 2 9999 EC at the measurement locations (Tuesday 24 July 2007) and the travel times

between locations 1 and 2, 3, and 4.

Table 1 9999 Overview of Demand Multiplier Patterns in ModelTD

DMPPS DMPREF DMPSIM

Name DMP of pumping station Reference DMP of test area Simulated DMP of test area

Origin Supply area Vlietregio Test area ModelBU of test area with
SIMDEUM demand patterns

# homes 16,000 144 144

Time 21–30 July 2007 24–29 July 2007 n.a.

# weekdays 6 3 10

# weekend days 4 2 10

Original time step 5 min, average flows 1 min, instantaneous flows 1 s

Remark Continuous flows for monitoring
systems were subtracted
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The model was not calibrated on pressure; the selected

network has well known pipe lengths, diameters and wall

roughnesses and a fixed head at the entry point.

Water demand pattern generation

The end-use model SIMDEUM (Blokker et al. 2010b)

was used as a water demand pattern generator. SIMDEUM

input consists of information on the number and age of

residents, the residents’ sleep–wake rhythm and posses-

sion of, and behaviour with respect to, water-using appli-

ances. Generic Dutch data were used for the water-using

appliances and time use (Blokker et al. 2010b). Specific census

data of the town Benthuizen were used; this information

is available in the Netherlands by postal code area (CBS;

Table 2).

For each of the 144 homes, 20 unique water demand

patterns on a time scale of 1 s were generated with SIM-

DEUM (Blokker et al. 2010b); 10 patterns for weekdays and

10 patterns for weekend days. The patterns were then tem-

porally aggregated (over 1 min, 15 min and 1 h) and divided

by the average daily demand as obtained from the water

meter readings. This led to 10 DMPs for each home. These

DMPs do not necessarily have an average of 1 because they

were divided by the average daily demand and not the

average of the specific simulated demand.

A table was constructed which cross references customer

point identification, average daily demand (L/day) and the

demand category identification number (ID). This table was

imported into the InfoWorks model. One demand category

ID is linked to each of the 144 homes, and remains the same

for all 10 different patterns. The demand multiplier patterns

were exported into a text file of a specific InfoWorks format;

a so called ‘‘.ddg’’ file. For each ‘‘demand category’’, informa-

tion on the demand category ID, the number of multipliers,

the time step and multiplier per time step are written to the

file. This led to 20 computer generated .ddg files containing

144 DMPs per time scale. For the three different time scales

(1 min, 15 min and 1 h) this means that 60 .ddg files were

created. These .ddg files were imported for the different

model scenarios.

Water quality model

The hydraulic model was run with the water quality option

enabled. This allowed for the determination of the residence

time, which InfoWorks calls ‘‘water age’’. To determine the

residence time the simulation run was set to 48 hours, where

the diurnal demand patterns were repeated at hour 24 to 48.

Because the residence times in this network do not exceed 24

hours, the diurnal patterns of the second day were not altered.

One model run took less than one minute.

Sensitivity analysis and model validation

Twelve different scenarios were modelled (Table 3), which

are related to network layout (branched and looped), differ-

ent hydraulic time steps (1 min, 15 min and 1 h) and different

demands. Scenarios 1, 3 and 5 were analysed to determine

the influence of temporal scale. Scenarios 7, 9 and 11, and 8,

10 and 12 respectively, were studied to determine the influ-

ence of DMP. Scenarios 3 and 9, and 4 and 10 respectively,

were examined to determine the influence of the top-down

approach and the bottom-up approach of demand allocation.

For each scenario, the ModelTD was run once and the

system flow and residence time at three locations were

determined. The ModelBU was run 10 times with 10 different

sets of stochastic water demand patterns. The resulting system

flow (and corresponding DMPSIM) is the averaged pattern of

the 10 resulting patterns; the resulting residence time at the

three locations is determined by the average and the 95%

confidence interval of the 10 simulations. This 95% confi-

dence interval is due to variation, not to uncertainty, and is

Table 2 9999 Specific Benthuizen input data into SIMDEUM; data of postal code 2731 (1230

homes) in 2006 (CBS)

Resident type Value

Households One-person households 22%

Households without children 30%

Households with children 48%

Average household size 2.8

Age distribution 0 to 15 years old 23%

15 to 25 years old 14%

25 to 45 years old 26%

45 to 65 years old 27%

65 years and older 11%
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determined by the average þ /� two times the standard

deviation.

It was tested if 10 runs is enough to get a good view of

mean and standard deviation of the residence times over the

day. The difference between (mþ 2s) of the residence time

after N – 1 simulations and (mþ 2s) after N simulations

reveals how large the effect of an extra simulation run is.

To calculate the effect for N¼ 10, (mþ 2s)10 is compared to

(mþ 2s)9. Because the 10 data points (i.e. calculated residence

times) are the results of a Monte Carlo simulation, the order

of the 10 data points is random. To account for this effect, the

ten different subsets consisting of nine data points are con-

sidered as possible results for N¼ 9. At each time step, the

maximum difference (MD) between (mþ 2s)10 and (mþ 2s)9

as a percentage of m10 is calculated:

MD ¼MAXðmþ 2sÞ9 � ðmþ 2sÞ10

m10
ð1Þ

An MD of less than 5% is considered to be small enough

to assume that 10 simulation runs suffice.

Additionally, a Kolmogorov–Smirnov (KS) test was per-

formed on the resulting residence time per time step on each

of the three locations to verify that the data are normally

distributed; the mean and variance of the normal distribution

were estimated from the data. If the data are normally

distributed, the mean and standard deviation can be used to

demonstrate the results of several simulation runs.

For the model validation, the modelled DMPSIM and the

measured DMPPS and DMPREF were compared. The diurnal

pattern allows a visual assessment of how well the models

resemble reality. To not leave it at a visual assessment, the

resemblance of the DMPs (with, by definition, an average

of 1) is quantified with the help of the auto- and cross-

correlation of the DMPs. The cross-correlation between the

DMPs quantifies how well the modelled DMPs fit

the measured DMPREF. The auto-correlation of the DMPs

shows whether the DMPs have similar temporal variability.

The measured residence time at three locations and

different times on the day was compared to the modelled

residence time in the two network modes. The difference

between (the average of) the model and the measurement is

expressed by the Mean Error (ME), Root Mean Square Error

(RMSE), and coefficient of determination R2. The absolute

values of ME and RMSE are expressed in hours; the relative

values are percentages of the measured residence times. Also,

the percentage of the model values that differ less than 10

minutes from the measured value is calculated. For the

ModelTD, this percentage is calculated for the average mod-

elled values. For the ModelBU, this percentage is calculated

for the average modelled values and for the 95% confidence

interval of the 10 different runs.

Table 3 9999 Model scenarios

Scenario Hydraulic model Layout DMP Specifics Time step # runs

1 ModelBU branched N.A. weekday 1 min 10

2 ModelBU looped N.A. weekend 1 min 10

3 ModelBU branched N.A. weekday 15 min 10

4 ModelBU looped N.A. weekend 15 min 10

5 ModelBU branched N.A. weekday 1 h 10

6 ModelBU looped N.A. weekend 1 h 10

7 ModelTD branched DMPREF weekday 15 min 1

8 ModelTD looped DMPREF weekend 15 min 1

9 ModelTD branched DMPPS weekday 15 min 1

10 ModelTD looped DMPPS weekend 15 min 1

11 ModelTD branched DMPSIM weekday 15 min 1

12 ModelTD looped DMPSIM weekend 15 min 1
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RESULTS AND DISCUSSION

Demand multiplier pattern

Figure 3 shows the diurnal patterns. On weekdays, DMPPS

does not show a very distinct morning peak while DMPREF

and DMPSIM do. The start of low night use for DMPSIM is

later than for DMPREF and DMPPS. For weekend days, all

DMP are similar. DMPREF is more spiky, because it is only

based on 2 to 3 days of measurements of instantaneous flows.

A further analysis of the auto- and cross-correlation (not

illustrated here) showed that for weekdays, the auto-correla-

tion of DMPREF is represented slightly better by the auto-

correlation of DMPSIM than by the auto-correlation of

DMPPS. This means that the variability of the flow into the

network is predicted better by DMPSIM than by DMPPS. For

weekend days, DMPSIM has a much better agreement to

DMPREF than DMPPS does. The cross-correlation between

DMPPS and DMPREF is slightly higher (84% on weekdays,

90% on weekend days) than the cross-correlation between

DMPSIM and DMPREF (79% on weekdays, 75% on weekend

days).

Residence time – sensitivity analysis

At each time step, the maximum difference (MD, Equation

(1)) between (mþ 2s)10 and (mþ 2s)9 as a percentage of

m10 is calculated. Table 4 shows at how many time steps MD

is smaller than 5%. It also shows the average of MD over all

time steps. It shows that in the branched layout, 10 simulations

runs lead to a stable result, i.e. a less than 5% difference of

mþ 2s of the residence time between the ninth and tenth

simulation run. This conclusion cannot be drawn for the

looped layout at location 4. Especially with a short time step

of 1 minute, 10 simulation runs does not give a stable result yet

and more simulation runs are required. A KS test was per-

formed on the resulting residence time (10 data points) per

time step (96 time steps at the hydraulic time scale of 15 min)

on each location. The null hypothesis was that the data are

normally distributed and the test was performed at the 5%

significance level. At location 2 in the branched layout with a

15 min time step, the KS test showed that at 91 time steps

(95%, Table 5) the null hypothesis could not be rejected.

Therefore, it is assumed that in this case the resulting residence

time at each time step is normally distributed and that ten runs

are enough to get information on the mean and standard

deviation. This assumption appears to be valid in all cases,
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Figure 3 9999 Measured and simulated normalised DMP at 15 minutes time step on a)

weekdays and b) weekend days.

Table 4 9999 Relative maximum difference (MD, Equation (1)) between mþ 2s of ninth and tenth simulation run per time step

Time steps where MDo5% Average MD

Location Layout 1 min 15 min 1 h 1 min 15 min 1 h

2 Branched 100% 100% 100% 1.9% 1.7% 1.0%

3 Branched 100% 100% 100% 1.4% 1.3% 0.9%

4 Branched 100% 100% 100% 1.2% 1.2% 0.9%

2 Looped 100% 100% 100% 1.9% 1.7% 1.2%

3 Looped 99% 100% 96% 2.0% 1.9% 1.5%

4 Looped 83% 91% 96% 3.9% 3.6% 2.6%
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except for location 4 in the looped layout, where the normal

distribution can be confirmed for less than 90% of the time. In

this case ten runs of the ModelBU may not be enough. For this

case study, the number of simulation runs was limited to ten.

Figures 4–6 show the modelled and measured residence

time over the day for the different scenarios; Table 6 sum-

marizes the statistics. Depending on the network layout and

the measurement location, the maximum residence time is

reached between 5:00 and 9:00 a.m., which is related to the

low night use. The fast decrease in residence time after the

maximum is related to the peak in demand in the morning.

The 95% confidence interval of the residence time in the

Table 5 9999 Percentage of modelled residence time results per time step that is normally

distributed according to Kolmogorov–Smirnov test on 10 data points per time

step

Time scale

Location Layout 1 min 15 min 1 h

2 Branched 95% 95% 100%

3 Branched 95% 95% 100%

4 Branched 96% 98% 88%

2 Looped 95% 92% 96%

3 Looped 92% 93% 96%

4 Looped 82% 76% 50%

w
at

er
 a

ge
 (

h)
 −

 lo
c.

2 

time step 1 min

0

1

2

3

4

5
time step 15 min time step 60 min

w
at

er
 a

ge
 (

h)
 −

 lo
c.

3 
 

0

1

2

3

4

5

time

w
at

er
 a

ge
 (

h)
 −

 lo
c.

4 
 

00:00 06:00 12:00 18:00
0

1

2

3

4

5

time
00:00 06:00 12:00 18:00

time
00:00 06:00 12:00 18:00 00:00

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Model     (μ)
BU

Model     (μ±2σ)BU

Figure 4 9999 Modelled residence time with ModelBU in branched network layout (scenarios 1, 3 and 5) on locations 2 (a-c), 3 (d-f) and 4 (g-i) with a time scale of 1 min (a, d, g), 15 min (b, e, h) and
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ModelBU is the largest for location 4 in the looped network

layout; this is due to local conditions and flow direction

reversals (Figure 6(f)).

The effect of the model’s temporal scale was determined

by comparing the resulting residence time from the ModelBU

with hydraulic time steps of 1 min, 15 min and 1 h (Figure 4).

The difference in results is due to time averaging only. For

determining residence time in this particular case, a 15

minute time scale is accurate enough. A shorter time step

(1 minute) does not lead to a different 95% confidence

interval of residence times. A longer time step (1 h) leads to

too much time averaging; the minimum residence time is

higher and the maximum residence time is lower than with a

time step of 15 minutes. Therefore, the 15 minute time scale

was used in the remaining analysis of Figures 5 and 6.

The effect of the model’s spatial scale can be determined

by comparing the resulting average residence time from the

ModelBU with a hydraulic time steps of 15 min (Figure 4) and

the resulting residence time from the ModelTDþDMPSIM

(Figure 5). These two models vary in spatial correlation of

the demands and in the location of the demand nodes, i.e. the

ModelBU has its demand nodes distributed along the pipes;

the ModelTD has its demand nodes and the ends of the pipes.

In the branched layout (compare average of Figures 4(b), (e)

and (h) and black solid line in Figure 5(a), (c) and (e)) there is

no difference between the average of the ModelBU and the

ModelTD. In the looped layout (compare average of ModelBU

in Figures 6(b), (d) and (f) and black solid line in Figures 5(b),

(d) and (f)) there is a small difference at locations 3 and 4:

the ModelTD results in a smoother line and shows a lower
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residence time in the morning at location 3 and a higher

residence time in the morning at location 4. Spatial

scale therefore has a limited effect on the mean and 95%

confidence interval of calculated residence times at the

measurement locations. The effect of spatial scale is eminent

at the periphery of the network, where only a few homes are

connected.

The effect of the ModelTD’s DMP was determined by

comparing the results from ModelTDþDMPREF, DMPPS and

DMPSIM respectively (Figure 5). An effect of the different

water demand patterns on residence time was expected from

Figure 3. The effect of the DMP is apparent as the three

different DMPs lead to different residence times. The mea-

sured residence time is most often predicted best by the

ModelTDþDMPPS, i.e. for location 3 and 4 in the branched

layout and for location 2 and 3 in the looped layout (Table 6).

Sometimes the ModelTDþDMPSIM works best, i.e. for

location 2 in the branched layout and for location 4 in the

looped layout (Table 6). The DMP that was actually measured

does not lead to the best results when applied in the

ModelTDþDMPREF.

Residence time – model validation

The difference between the conventional approach (ModelTD

þDMPPS) and the new approach (ModelBU) of demand

modelling is shown in Figure 6 and Table 6. The two models

predict the residence time with comparable ME and RMSE
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and R2. Both models predict the residence time in the

branched layout with an ME and RMSE of less than 30%.

Both models perform poorly for the looped layout

(RMSE430%) and especially for location 4 (Figure 6(f))

where they significantly overestimate the residence time.

The R2 is never above 0.72 which suggests that neither

model performs very well. The values of ME, RMSE and R2

mainly have a meaning in comparing the two models.

The absolute values are not easy to interpret because the

measured residence times at specific moments on the day

are different for consecutive days and therefore show

variance. Presumably, the residence time is normally distrib-

uted. However, the range of measured data is compared to the

model averages. The 95% confidence interval of the ModelBU

presents many more data points within 10 min from the

measured residence time than the average of both the Mod-

elBU and the ModelTD. This shows the added value of the

ModelBU.

The bottom-up modelling approach is probabilistic in

nature and offers a new perspective for assessing water

quality in the drinking water distribution system. The test

case showed that, especially on location 4 in the looped

network layout, the variability of residence time between

days is expected to be very high with the maximum residence

time 2.5 times as large as the average residence time, or the

minimum residence time 2.5 times as small as the average

residence time. This suggests that it would be very difficult to

use the tracer measurements at this location for calibration

purposes. Averaging of water demand and residence time

prediction may lead to misinterpretation of water quality

data. The model’s sensitivity is also related to the variability

of residence times, not so much to the average residence

times. A hydraulic model with a demand pattern time step of

15 minutes and limited spatial aggregation of demand pat-

terns leads to good results.

The stochastic approach of hydraulic modelling gives

insight into the variability of residence times as an added

feature beyond the conventional way of modelling. The con-

ventional ModelTD has a higher auto- and cross-correlation of

flows than the actual flows in the network. This results in the

ModelTD underestimating the flow direction reversals, stag-

nant flows and thus maximum residence times. Because

Machell et al. (2009) have argued that the maximum resi-

dence time is much more important than the average resi-

dence time, the ModelBU has benefits in determining

residence time.

Practical application

The study of a bottom-up approach of demand allocation

in this small test area showed that this approach leads to a

good understanding of average and variance of residence

times. This comes at a cost. Compared to the conventional

top-down approach of demand allocation, the new model

approach leads to larger hydraulic models with more

nodes, more pipes and more numerous demand patterns.

In the test model, an extra node, pipe and demand pattern

were added for each individual home. Using a smaller time

step means that simulations take longer; a time step of 1

minute instead of 1 hour, approximately leads to a 60 times

longer simulation. In the test area this means that simula-

tions were still very quick. To determine the variance of

the residence time, multiple simulation runs are required.

This also means a longer total simulation time. With the

still increasing computer capacity, the problem of more

demanding hydraulic models will diminish. Another prac-

tical issue is that the analysis of the set of results cannot be

done in a hydraulic network solver, but needs to be done

elsewhere.

A sensitivity analysis showed that for the specific purpose

of determining residence times for the selected locations,

there is no need to run the hydraulic model at as small a

time step as one second; a 15 minute time step suffices. Also,

some spatial aggregation is permitted; it is not required that

each home has its own demand node in the hydraulic model.

The optimal number of simulations can iteratively be deter-

mined by comparing the results of the Nth and (N-1)th

simulations and test that the results are normally distributed.

In this study the optimal number of simulations was not

determined; instead it was tested if ten simulations were

sufficient. For most locations in this case study, a stochastic

modelling approach of ten different simulations is enough to

get a good feel for the 95% confidence interval. These findings

can help to limit the model increase.

In this study some simplifications were introduced.

Firstly, an additional demand was extracted in order to

keep dispersion low. Secondly, in the branched layout no

mixing occurred. In the looped layout some mixing occurred,

Journal of Hydroinformatics 9999 13.4 9999 2011726 E. J. M. Blokker et al. 9999 A bottom-up approach of stochastic demand allocation

Downloaded from https://iwaponline.com/jh/article-pdf/13/4/714/386556/714.pdf
by guest
on 18 January 2019



but probably full mixing can be assumed because there

only T-junctions in this network (Ho et al. 2006). And

thirdly, there are no significant leaks in this network. These

simplifications allowed for the sensitivity analysis. A similar

modelling approach was done for a network with 1,000

homes and without the first two of the mentioned simplifica-

tions (Blokker et al. 2010a). The construction of an ‘‘all pipes’’

network model meant an effort. This effort was not specifi-

cally done for the study. Most Dutch water companies are

migrating to using all pipes network models as they can

automatically be generated from the GIS systems. Filling

the model with the appropriate water demand patterns and

running the simulations was automated and took little effort.

The study in this more practical network showed that a

bottom-up approach of demand allocation in real networks

is feasible without the need for calibration on water demands,

and leads to a realistic insight into average and variance of

residence times. It therefore has an advantage over the

conventional top-down approach.

In a network with leakage, the bottom-up approach of

demand allocation can also be used. Leaks must then be

added as separate demands. Giustolisi et al. (2008) show how

this can be done. In this case, leakages should be modeled as

pressure-dependent demands. The leakage patterns depend

on the hydraulic status of the network and on pipe-specific

leakage parameters.

CONCLUSION

A bottom-up approach of demand allocation (i.e. water

demand patterns are modelled per individual home and

subsequently the individual water demand patterns are

summed to obtain the water demand patterns at demand

nodes) leads to a total flow that is predicted at least as well

as the flow from the commonly used top-down approach

model. Furthermore, the bottom-up approach leads to pro-

mising results in predicting residence time in a small distribu-

tion network. The individual demand patterns are obtained

from the end-use model SIMDEUM without the need for any

flow measurements, nor for calibration of demands. Some

specific census data was collected and used as input to

SIMDEUM; most of the input data can be re-used from

earlier studies.

The water demand patterns are constructed per

individual home and on a per second basis. For the purpose

of residence time prediction at locations with a number

of households behind it, it is acceptable to use time-

averaging, and use a hydraulic time step of 15 minutes and

‘‘spatial-averaging’’ by summing numerous individual water

demand patterns into one demand node. For most locations

in this case study, ten simulation runs is enough to get an

understanding of the expected mean and variance of residence

times over the day. A comparison between the results of N

simulations and N – 1 simulations and a Kolmogorov–Smirnov

test can be used to verify how many simulations are required.

A stochastic approach in demand and water quality

modelling results in more insight into the variability of

residence times. A detailed demand allocation with stochastic

demand patterns will improve the water quality modelling,

especially in the periphery of the drinking water distribution

system.

SYMBOLS AND ABBREVIATIONS

DMP Demand multiplier patterns; see Table 1 for subscripts

DWDS Drinking water distribution system

EC Electrical conductivity

KS test Kolmogorov–Smirnov test

MD maximum difference

ME mean error

ModelBU Model with bottom-up approach of demand allocation

ModelTD Model with top-down approach of demand allocation

RMSE root mean square error

R2 coefficient of determination

m mean

s standard deviation
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