Development of an integrated computational tool to improve performance of irrigation districts
L. Pérez Urrestarazu, J. A. Rodríguez Díaz, E. Camacho Poyato, R. López Luque and F. M. Borrego Jaraba

ABSTRACT

Nowadays irrigation district managers require several tools to assess irrigation networks’ performance such as hydraulic models, geographic information systems (GIS) or decision support systems (DSS) which are available but as independent elements. Thus, simplifying the use of these tools by means of applications that integrate all these components would be helpful for irrigation district managers. In this paper, a computer tool combining a GIS, a hydraulic model and performance indicators (PIs) has been developed creating a database to deal with most information required in an irrigation district. MapObjects Java Edition was used for the GIS integration and EPANET calculation module for the hydraulic modeling. This tool enables the study of the network performance, taking into account real measures (data from the remote control system) and simulated measures (obtained when running the hydraulic model) which are stored in a database and used to calculate different indicators that can be represented in the GIS. The PIs calculated with this tool give important information regarding the network response to different conditions, malfunction problems and failures in supply. Therefore, this tool is also useful to study the effects of improvements and the quality of service provided to farmers.

Key words | GIS, hydraulic model, performance indicators, Spain, water distribution systems

NOTATION

A_f area of the field supplied
AS area supplied per outlet
DE distribution efficiency
D_i duration of interruptions in supply
D_s total duration of the service
Ef irrigation efficiency
ET_c crop evapotranspiration
F real flow measured in the outlet
F_a flow assigned in the outlet
$F_{r/a}$ real/assigned flow ratio
$F_{r/s}$ real/simulated flow ratio
F_s simulated flow in the outlet
FA flow adequacy
L longitude of tubes
NC network coverage

Nd number of days with the system working
Nd_o number of days in which the outlet is open
Nd_p number of days with a pressure below required at the checkpoint
nFS number of fields supplied
nO number of outlets in each field
nO_n number of outlets of the network
nO_p number of outlets with a daily average pressure below required
O_a output per unit irrigated area
O_s output per unit irrigation supply
OR outlet operation ratio
P real pressure measured in the checkpoint
P_a pressure assigned in the checkpoint
P_{bq} pressure average in the best quartile

doi: 10.2166/hydro.2012.074
The performance of pressurized irrigation networks is subject to variable operating conditions which are unpredictable. Therefore, it is very important to know the network response to these uncertain determining factors either in the designing, planning or operation stages (Lamaddalena & Khadra 2001). Then, an evaluation of irrigation distribution systems is necessary to improve and modernize networks (Lamaddalena & Pereira 2007a). Neri (1998) established that the global performance of an irrigation system comes from its response to farmers’ requirements, considering the limits imposed by policies and the resource’s availability. Molden & Gates (1996) described irrigation service in terms of adequacy, reliability and equity. So, when designing or managing an irrigation system, the use of performance indicators (PIs) is highly recommended. A PI is basically a quantitative measure of a relevant aspect of irrigation behavior which helps to evaluate and monitor irrigation systems (Alegre et al. 2000). PI values are ratios that relate variables in such a way that a large amount of information can be reduced to a single number (Rodríguez Díaz et al. 2008).

Hydraulic models are used to simulate network performance under diverse management alternatives and water demand scenarios (George et al. 2004b; Rodríguez Díaz et al. 2009). Thus, the integration of these hydraulic models in a decision support system (DSS) allows the evaluation of actions and the introduction of different factors in the simulation process to assess unforeseen events (Lilburne et al. 1998; Le Bars & Le Grusse 2008).

Geographic information systems (GIS) provide a basis for combined management and guidance applied to field operations thanks to the capability to process data to produce basic mapped outputs for management purposes (Earl et al. 2000). They are very helpful in irrigation network

\[
\begin{align*}
P_{p_{i}} & \text{ pressure average in the poorest quartile} \\
P_{r/a} & \text{ real/assigned pressure ratio} \\
P_{r/s} & \text{ real/simulated pressure ratio} \\
P_s & \text{ simulated pressure} \\
PE & \text{ pressure equity} \\
PR_c & \text{ pressure reliability at checkpoints} \\
PR_n & \text{ pressure reliability in the network} \\
Q_a & \text{ allocated flow} \\
RWS & \text{ relative water supply} \\
R_{ef} & \text{ effective rainfall} \\
SR & \text{ supply reliability} \\
t_i & \text{ irrigation time} \\
VAP & \text{ value of agricultural production (€)} \\
V_{ws} & \text{ volume of water supplied (m}^3\text{)} \\
V_{in} & \text{ cumulative volume entering the network system} \\
V_{out} & \text{ cumulative volume discharged in the outlets of each field} \\
WDIA & \text{ water delivery per irrigated area}
\end{align*}
\]
management for detecting critical points or identifying malfunctions. Normally, most of the GIS-based applications are independent of automatic data collection systems and they require the information to be imported manually (Ojeda-Bustamante et al. 2007). For this reason, it is necessary to link the data acquisition system with the analysis tool. Hence, another dimension of integration is based on the use of GIS not only as a common framework and reference point but also as the primary display paradigm. This integration effectively transforms the system into a spatial decision support system (SDSS) (Ochola & Kerkides 2004). SDSS is an increasingly widely used tool in decision-making processes in the industry as well as in agriculture. Implementations of SDSS have been evolving rapidly in recent years (Cohen et al. 2008). A District Management System (DMS) can be defined as an evolution of SDSS, putting together a visual system (GIS) and hydraulic simulation algorithms to allow the analysis of water demands and distribution management at field level (Fipps & Pope 1998).

There are several examples of applications integrating hydraulic models with a GIS interface (George et al. 2004a; Khadra & Lamaddalena 2010) as tools to improve water use performance (Fortes et al. 2005; Kim & Evans 2009), irrigation planning systems (Muthanna & Amin 2005) or a DSS to estimate water demands in real time (Rao et al. 2004). Lamaddalena & Sagardoy (2000) developed a software called COPAM (Combined Optimization and Performance Analysis Model) to analyze the hydraulic performance of an irrigation system. Lamaddalena & Khadra (2001) combined COPAM with a GIS in order to better identify failure areas of irrigation systems in terms of relative pressure deficit and reliability. Lamaddalena & Pereira (2007b) used the FLUCS (Model Flow Upstream Control System) model combining indicators to study different conditions considering the effects of installed pressure and discharge regulation devices. SIMIS is an FAO conceptual DSS used in irrigation districts for planning, maintenance and administrative tasks (Mateos et al. 2002). Recently, other tools have integrated some of the described characteristics. For example, ADOR is a specialized database linked to a GIS which helps to manage information on water delivery parameters, fields and water users; it can also be used for billing operational and maintenance services, thus becoming a software tool for the daily water management of irrigation districts (Lecina et al. 2010). It is used to manage detailed information about district water management and to promote better on-farm irrigation practices with a GIS interface (Playán et al. 2007). GESTAR is a computational hydraulic software application adapted for the design, planning and management of pressurized irrigation networks with an interactive graphical interface enabling hydraulic and energy sizing, analysis and management in pressurized systems. It can also be used for optimum network control and parameter calibration (Estrada et al. 2009). However, none of these applications include real-time network assessment using PIs and the possibility of simulating new conditions such as different operational and climate scenarios or changes in cropping patterns. In the case of HuraGIS, a DSS combined with a GIS and a hydraulic model, some indicators are used. It was developed to simulate agronomic irrigation processes and the hydraulic and water quality behavior in pressurized networks (Jimenez-Bello 2008; Jimenez-Bello et al. 2009a, b).

The objective of this work is to accomplish another step of integration to assess the distribution networks’ performance and the quality of service provided in an irrigation district. PIs are calculated using the information obtained by hydraulic simulations and remote data collection systems. The results can be spatially identified and managed in the incorporated GIS application. As a result, the computer tool named the Irrigation Networks’ Manager (INM) has been developed and tested in an irrigation district in southern Spain.

SYSTEM ARCHITECTURE

A combination of a GIS, a hydraulic simulation model (HSM) and a module for PI calculation is used for the development of the INM. A database is used to store the data collected from the remote control and acquisition systems in addition to the irrigation districts’ records, and climate and crop information. This database feeds the system, generating simulated and real indicators spatially located in order to make decisions (Figure 1).

The INM can work in two different ways. First, it can collect flow and pressure records from the remote telemetry system calculating the PIs for these real data. Second, the
system can work in an alternative way, checking if the actual performance is similar to that obtained by hydraulic modeling. For this, the INM gets the actual demands for every outlet and uses this information as an input for the simulation module. Then it calculates the theoretical PIs using simulated flows and pressures which are compared with the real ones. This function is very useful in order to detect water losses or drops in pressure due to operative problems or poor network maintenance as a complete assessment of the overall network performance is carried out.

Software development

The Java programming language has been selected for the development of this computer tool due to its versatile architecture. It is object-oriented and dynamic with an enriched API (Application Programming Interface) which covers system codification needs (Natali et al. 2006). The Unified Modeling Language (UML) has been applied for the specification and modeling graphic techniques which enhance connections between different system components (Pinet et al. 2007). In the codification stage, Java Standard Development Kit (JDK) 5.0 version has been used due to its efficient work with dynamic data structures. The system database has been developed in PostgreSQL adding the graphical objects' support with a PostGIS module.

Hydraulic simulation model (HSM)

One of the most widespread HSMs is EPANET, which is a public domain software developed by EPA’s Water Supply and Water Resources Division that models water distribution piping systems and performs extended-period simulation of the hydraulic and water quality behavior within pressurized pipe networks (Rossman 2000). EPANET has been mostly used to model urban distribution networks (Ostfeld et al. 2002) but there are some applications for the management of irrigation networks (González et al. 2005). The use of the EPANET model, which is based on a demand-driven analysis approach, has some limitations as they are incapable of simulating pressure-deficient conditions properly (Tanyimboh et al. 2001). Under these conditions, the demand-driven analysis will compute heads below the minimum required for outflow to occur physically at some nodes (Ang & Jowitt 2006). Therefore, in some cases, a pressure-driven analysis is necessary to obtain a better estimate of flow through the network and to ascertain the consequences of pipe failures or water loss via leakage (Giustolisi et al. 2008a). Problems with network connectivity may appear using EPANET in some situations such as reliability assessment analysis which requires closing system pipes (Giustolisi et al. 2008b). These described limitations should be taken into account when using the INM for certain analysis.

EPANET’s computational engine has been integrated into the INM using its dynamic link library (DLL) functions available in the EPANET Programmer’s Toolkit.

Geographic information system (GIS)

The GIS is used for visualizing data as a framework for analysis and modeling operations (Santé-Riveira et al. 2008). The functionality of the map controls within the GIS component was implemented in this case with Map Objects Java Edition (ESRI 2004). It provides a robust, Java-based API to perform a wide variety of geographic-based display, query and data retrieval activities directly embedded in the application (it is not necessary to have any GIS software installed on the computer).

Performance indicators (PIs)

There is a huge number of PIs developed to analyze several aspects of irrigation processes (Burt & Styles 1998; Malano & Burton 2001; Alexander & Potter 2004) so a selection has
been made focusing on two main issues: performance and quality of irrigation service in the network. In the first case, adequacy, productivity and supply indicators are used while in the second some quality of service indicators (QSI) regarding network characteristics and performance (pressures and flows) are implemented. Gorantiwar & Smout (2005) reported a complete review of indicators used for irrigation water management; some of them were adapted by Pérez Urrestarazu (2007). Table 1 shows the selected PIs, their scope of calculation (field, checkpoint or network) and their typology as these PIs can be calculated for a period or for a certain instant (Pérez Urrestarazu et al. 2009). The last two PIs are network descriptors which point up the main characteristics of the network. Descriptors do not usually change in time unless a huge modernization process takes place in the irrigation district. The group of selected indicators was tested previously to assess their aptitude to study irrigation districts’ performance (Rodríguez Díaz et al. 2005, 2008; Pérez Urrestarazu et al. 2009).

In order to calculate these indicators it is necessary to previously define the required variables which are easily obtained parameters used to form the indicators due to simple operations between them (Rodríguez Díaz et al. 2005). The information about these variables will come from either real data (irrigation district’s records, remote control system) or simulated data (EPANET calculation module).

Selected PIs are defined as follows:

- **Relative water supply (RWS).** This indicator shows the relationship between the water that enters the system and the required water, that is, the volume of water applied and the theoretical crop water requirements measured as crop evapotranspiration \(ET_c \) (Levine 1982). The main function of RWS is to gain insight as to how crop requirements are satisfied with the water applied by farmers in addition to natural contributions (Molden et al. 1998):

\[
RWS_{\text{Period}} = \frac{\sum_{\text{Period}} \text{Rainfall} + \sum_{\text{Period}} \text{Irrigation}}{\sum_{\text{Period}} ET_c}.
\]

when RWS is around 1, crop water requirements are fully met (Rao 1995). It is dimensionless. Crop water requirements are estimated according to the FAO 56 methodology (Allen et al. 1998)

- **Output per unit irrigated area \((O_a) \) and output per unit irrigation supply \((O_s) \).** Both \(O_a \) and \(O_s \) are catalogued as

<table>
<thead>
<tr>
<th>PI</th>
<th>Scope</th>
<th>PI typology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative water supply (i)</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Output per area unit ((O_a))</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Output per volume unit ((O_s))</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Water delivery per irrigated area ((WDIA))</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Flow adequacy (FA)</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Pressure equity (PE)</td>
<td>Network</td>
<td>Periodic/instantaneous</td>
</tr>
<tr>
<td>Outlet operation ratio (OR)</td>
<td>Field</td>
<td>Periodic</td>
</tr>
<tr>
<td>Real/assigned pressure ratio ((P_{r/a}))</td>
<td>Checkpoint</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Real/simulated pressure ratio ((P_{r/s}))</td>
<td>Checkpoint</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Real/assigned flow ratio ((F_{r/a}))</td>
<td>Checkpoint</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Real/simulated flow ratio ((F_{r/s}))</td>
<td>Checkpoint</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>Pressure reliability (PR)</td>
<td>Checkpoint/network</td>
<td>Periodic</td>
</tr>
<tr>
<td>Supply reliability (SR)</td>
<td>Network</td>
<td>Periodic</td>
</tr>
<tr>
<td>Distribution efficiency (DE)</td>
<td>Network</td>
<td>Periodic</td>
</tr>
<tr>
<td>Area supplied per outlet ((AS))</td>
<td>Network</td>
<td>Descriptor</td>
</tr>
<tr>
<td>Network coverage ((NC))</td>
<td>Network</td>
<td>Descriptor</td>
</tr>
</tbody>
</table>
productive efficiency indicators (Malano et al. 2004), essentially used for comparison of scheme outputs against key inputs (land and water):

\[O_a = \frac{\text{VAP}}{A_f} \]

(2)

where VAP is the value of agricultural production (€) and \(A_f \) is the area of the field supplied (ha). It is measured in €/ha.

\(O_s \) is a measure of the so-called water productivity. It is defined as the amount of output produced per unit of water involved in the production (Igbadun et al. 2006). Crop production may be expressed in terms of total dry-matter yield (kg) or, when dealing with different cropping patterns, yield may be transformed into monetary units (Playán & Mateos 2006; Ali & Talukder 2008):

\[O_s = \frac{\text{VAP}}{V_{ws}} \]

(3)

where VAP is value of agricultural production (€) and \(V_{ws} \) is the volume of water supplied (m\(^3\)). It is measured in €/m\(^3\).

- Water delivery per irrigated area (WDIA) (Yildirim et al. 2007):

\[\text{WDIA} = \frac{V_{ws}}{A_f} \]

(4)

where \(V_{ws} \) is the volume of water supplied (m\(^3\)) and \(A_f \) is the area the field supplied (ha). It is measured in m\(^3\)/ha.

- Flow adequacy (FA):

\[\text{FA} = \frac{Q_a \cdot t_i \cdot \text{Ef}}{\max\{\sum_{\text{period}} (\text{ET}_c - R_{ef})\} \cdot 10 A_f} \]

(5)

where \(Q_a \) is the allocated flow to the field studied (m\(^3\)/h), \(t_i \) is the irrigation time or duration (h), \(\text{Ef} \) is the irrigation efficiency, \(\text{ET}_c \) is the crop evapotranspiration (mm), \(R_{ef} \) is the effective rainfall (mm) and \(A_f \) is the area of the field (ha). The desired value is 1. Higher values mean that the outlet is oversized and, if lower, the maximum flow supplied will not be enough for crop requirements.

- Pressure equity (PE). This QSI studies how pressure is distributed in the network using Interquartile ratio (Abernethy 1986; Bhutta & Van der Velde 1992; Bos et al. 1994):

\[PE = \frac{P_{pq}}{P_{bq}} \]

(6)

where \(P_{pq} \) is the average pressure in the poorest quartile and \(P_{bq} \) is the average pressure in the best quartile, taking into account all the network’s checkpoints.

- Outlet operation ratio (OR) (Pérez Urrestarazu 2007; Pérez Urrestarazu et al. 2009):

\[\text{OR} = \frac{N_{d_o}}{N_d} \]

(7)

where \(N_{d_o} \) is the number of days in which the outlet has worked and \(N_d \) is the number of days in the period that water has been available to farmers.

- Real/assigned pressure ratio \((P_{r/a})\) and real/simulated pressure ratio \((P_{r/s})\) (Pérez Urrestarazu 2007; Pérez Urrestarazu et al. 2009):

\[P_{r/a} = \frac{P}{P_a}; \quad P_{r/s} = \frac{P}{P_s} \]

(8)

where \(P \) is the real pressure measured in the checkpoint, \(P_a \) is the design pressure and \(P_s \) is the simulated pressure in that point.

- Real/assigned flow ratio \((F_{r/a})\) and real/simulated flow ratio \((F_{r/s})\):

\[F_{r/a} = \frac{F}{F_a}; \quad F_{r/s} = \frac{F}{F_s} \]

(9)

where \(F \) is the real flow measured in the outlet, \(F_a \) is the allocated flow and \(F_s \) is the simulated flow. It has also been defined as Delivery Performance Ratio (DPR) (Mondal & Saleh 2005).

- Reliability. A system is reliable if it works properly, following the settled parameters and giving the desired service. Therefore, it can be defined as the probability of no occurrence of failures (Renault & Vehmeyer 1999). It can be referred to pressure at checkpoints.
(PRc), pressure in the whole network (PRn) and water supply (SR):

\[
PR_c = \frac{Nd - Nd_p}{Nh}
\]

(10)

where \(Nd \) is the number of days in the period with the system working and \(Nd_p \) is the number of days with a pressure below required at the checkpoint:

\[
PR_n = \frac{nO_n - nO_p}{nO_n}
\]

(11)

where \(nO_n \) is the number of outlets of the network and \(nO_p \) is the number of outlets with a daily average pressure below required:

\[
SR = \frac{D_s - \sum D_i}{D_s}
\]

(12)

where \(D_s \) is the total duration of the service and \(D_i \) is the duration of interruptions in supply (hours or days).

- **Distribution efficiency (DE)** (Pérez Urrestarazu 2007; Pérez Urrestarazu et al. 2009):

\[
DE = \frac{\sum V_{out}}{\sum V_{in}}
\]

(13)

where \(V_{out} \) is the cumulative volume discharged in the outlets of each field (m\(^3\)) and \(V_{in} \) is the cumulative volume entering the network system (m\(^3\)).

- **Area supplied per outlet (AS)** (Pérez Urrestarazu 2007; Pérez Urrestarazu et al. 2009):

\[
AS = \frac{\sum_{i=0}^{n fields} (A_i / nO_i)}{nFS}
\]

(14)

where \(A_i \) is the area of each field supplied (ha), \(nO_i \) is the number of outlets in each field; \(nFS \) is the number of fields supplied and \(i \) is the number of the field considered. It is measured in ha/outlet.

- **Network coverage (NC)** (Pérez Urrestarazu 2007; Pérez Urrestarazu et al. 2009):

\[
NC = \frac{\sum L}{\sum A_i}
\]

(15)

where \(L \) is the length of each pipe composing the network (m) and \(A_i \) is the area of each field supplied by the network (ha). It is measured in m/ha.

Database architecture

The database includes all the necessary information to run the model and calculate the indicators. Figure 2 shows a flowchart with all the relationships among the different database elements, each of them having a key identification code and several values recorded. Furthermore, it enables the user to record values of the calculated indicators in a log file which indicates for each PI: value, date and identification code of the element related.

In order to obtain the data in the proper format, a template has been created in Excel format which is included in the program folder in the set-up process.

SYSTEM DESCRIPTION

The tool presented combines a hydraulic model, a GIS and a PI calculation module in a friendly user interface: the INM. The application can work on its own (the user is requested to introduce the information manually or use an MS Excel file) or link to a general database from the remote control system which provides the application with real-time data. The INM will be freely available for any user and, as it comes with its own installation package, it will not require any other program installed in the computer.

The INM is able to work with different irrigation districts simultaneously and for each one it stores and generates information on various networks and fields. The user can introduce new data or view the existing information within the network or even in a specific field just by selecting the option.

All the irrigation district descriptors and variables for PI calculations in different irrigation years are stored in the database so the user can easily find the information required. The information stored for each field with basic data about the field (ID, area, irrigation system, current demand, volumes), specific information about the outlets (ID, location and elevation, demand and pressures) and crop data can be viewed and modified by the user.
doing the analysis, the network must be completely characterized, including all the elements, topology and information required as shown in Figure 3.

Once all the data are provided, PI can be automatically calculated with different options and levels. Indicators can be obtained for one specific network of an irrigation district in the selected irrigation season. Diverse indicators are available for the complete network or for certain fields, outlets and checkpoints designed by the user (Figure 4). Results of PI calculation are reported on the screen and can be exported as a report or Excel file.

If the user wants to know the network response to different situations or scenarios, a simulation module is provided to run several analyses based on the EPANET simulation engine. As a result, simulated values for different variables, such as flows and pressures, can be obtained and used for PI calculation instead of the actual values provided by the user or the remote control system. With all this information,
the user will be able to compare the real situation against the theoretical one or study the difference in network performance when actual conditions are modified. As an example, the user could know the network response to variations in water requirements because of changes in the cropping pattern, irrigation system or even due to climate change (Pérez...
Urrestarazu et al. 2010). Therefore, providing the program with the new values of water demands in the outlets, the user will obtain the network parameters for the new condition in order to calculate the indicators. An irrigation district manager will also be able to study how the network would work under modifications in network characteristics or topology such as the addition of new outlets, replacement of pipes or the inclusion of a new water reservoir or tank. Indicators obtained with the simulation of these situations could be compared to actual ones to gain valuable conclusions prior to any real modification.

All the information stored or computed by the application can be summarized in a report or exported as an Excel file for analysis. Network data can be exported using an ‘inp’ file, which is the format utilized by the EPANET application as exchange file.

The GIS module enables the user to view the results on a map where the network and fields are displayed showing all the information available either from PI calculation or from the simulation. Basic GIS operations are available, such as showing results with different color codes (Figure 5).

CASE STUDY

An application of the INM in the Palos de la Frontera irrigation district is presented as an example case study. This irrigation district is located in Huelva (southern Spain) and it has 3,343 ha with 826 fields devoted predominantly to strawberry production. The water is supplied by a pressurized network designed to irrigate on demand and divided into three sectors in order to irrigate each field separately. In recent years, the distribution system was upgraded, improving the network and installing a remote control system which provides information on parameters such as volume, flow or pressure in real time. The allocated flow is 1.2 l/s/ha, with a minimum pressure in the outlets of 3 atm. Each sector has a pumping station with five vertical pumps, which allows a maximum flow of 1,584, 1,056 and 1,372 l/s, and 8.5, 4.5 and 5.5 atm of pressure for sectors I, II and III, respectively. Sector III’s network was used for this case study. This sector has 1,143 ha with 125 fields arranged in 54 irrigation units.

Climatic data are obtained from an automatic agro-weather station (Moguer Station: 37°08’52” N, 06°47’28” W;
altitude 87 m) providing daily information on rainfall (490 mm annual average), temperature, wind, relative humidity and reference evapotranspiration (1,145 mm annual average). In order to calculate the indicators, variables relating to flows, volumes and pressures were collected from outlets and checkpoints using the remote metering devices available in the irrigation district. The remote control system transmits data to the SCADA (Supervisory Control and Data Acquisition) which is linked to a database that stores these values every 15 min. The information needed for the INM was recovered from this database and arranged following the program template.

Figure 6 | OR, PRc and Fr/a values represented in the GIS.
Palos de la Frontera’s network (sector III) was modeled in the INM and the indicators were calculated using the data recovered during a complete irrigation year (2006). In general, the results showed that the service provided in this sector has good quality in terms of flow adequacy, distribution efficiency and pressure and supply reliability (Pérez Urrestarazu et al. 2009). Due to the large amount of results obtained, only an example of some indicators is presented, and in some cases average values are used.

Figure 6 shows OR, PRc and Fr/a values represented in the GIS. The number of outlets with a high operating rate (OR > 0.8) is small, representing only 1.4% of the total. This means that, for these conditions, the network design flow is too high. As the OR values are very low for many outlets, usually the network is operating below capacity, so a correct zoning of the network may be advised. The fields where the pressure was frequently under the design pressure show low values for PRc. Therefore, this information could help to identify problems with the pressure in the outlets or critical points in the network. Fr/a = 1 implies that the outlet is working with the assigned flow, so higher values mean an excess while low ones show outlets working below the allocated flow. Therefore, some fields in this area could reduce their assigned flow as it is lower than estimated.

DE had a value of 0.896 over the period studied (standard deviation: 0.07) which suggests that water losses in the network are around 10%. PRc was determined to be 0.77, so in this network 23% of the checkpoints could have average pressures below those required for optimum operation. High values for SR have been observed (0.993), which indicates that there are few supply interruptions. In these terms, the supply service is considered to be very good in this part of the irrigation district. Pressure reliability and ratios helped to identify the points with frequent problems so correction measures can be implemented to improve performance.

Having records of PI values over time may be interesting for district managers in order to know their temporal behavior and identify a poor network performance. As an example, Figure 7 shows the evolution of PE values during the irrigation year. Comparing the value of this indicator with the average (0.55) gives an idea of the network performance in terms of pressure in a certain moment.

CONCLUSIONS

A valuable tool has been designed to help technicians, managers and assistants to assess the performance of pressurized irrigation distribution networks through an easy and intuitive interface. The application includes a hydraulic model so different scenarios can be evaluated running simulations with new conditions. The GIS module allows users to locate all the available information and critical or problematic points or areas can be determined.

The PIs calculated with the tool presented give important information regarding the network response to different conditions, the use that farmers make of it, the malfunction problems and the failures in supply. They are also useful to study the effects of improvements and the quality of service provided to farmers.

Much information is required and real-time data acquisition is advisable for early detection of problems. For this reason, a better response is obtained when linking the application to a remote control system. This could represent one of the program’s main constraints as each remote control system has its own communication protocols and database format so it should be adapted to the one required by the application following the template provided with the program. Also, some problems dealing with the remote control system might occur such as data failures or communication errors. Therefore, a proper maintenance of these systems is required as this tool relies on the information provided by them.
ACKNOWLEDGEMENTS

The development of this paper has been possible thanks to the support of the National Scientific Research, Development and Technological Innovation Plan (PTR1995-0896-OP, Ministry of Science and Innovation). The authors also wish to thank the reviewers for their comments as they helped to improve the quality of our paper.

REFERENCES

First received 12 June 2011; accepted in revised form 14 September 2011. Available online 1 February 2012.