Mammalian Species No. 721, pp. 1–8, 3 figs.

Mellivora capensis. By Jana M. Vanderhaar and Yeen Ten Hwang

Published 30 July 2003 by the American Society of Mammalogists

Mellivora Storr, 1780

Viessera: Schreber, 1776:43. Part, not Viessera: Cmelin, 1788.
Mellivora Storr, 1780:34. Type species Viessera ratel Sparrman, 1778 (= Viessera capensis Schreber, 1776) by designation (Melville and Smith 1987; Sclater 1900).
Urus Cuvier, 1798:112. Type species Ursus mellivorus.
Gulo Desmarest, 1820:176. Type species Gulo capensis (= Gulo mellivorus Smith).
Ratellus Gray, 1827:188. Based on Ursus inauritus Schreber, 1776.
Ratellus typicus Bennett, 1830:13. Type species Ratelus mellivorus Bennett. Variant spelling of Ratellus.

CONTEXT AND CONTENT. Order Carnivora, suborder Fissipedia, family Mustelidae, subfamily Mellivorinae. The genus is monotypic (Wozencraft 1993).

Mellivora capensis (Schreber, 1776)

Honey Badger

Viessera capensis Schreber, 1776:plate 125. Type locality “Vorgebirge der guten Ruhmung” restricted to Cape of Good Hope, Cape Province, South Africa.
Viessera ratel Sparrman, 1777:147. Type locality “India to Turkestan.”
Ursus inauritus Schreber, 1776:plate 125. Type locality “Vorder-Ituri Forest to a point fifteen miles west of Mawampi River, Iraq-Persian Frontier.”

CONTEXT AND CONTENT. Context as above. Originally, 16 subspecies were described for M. capensis (Allen 1939; Ellerman and Morrison-Scott 1966), currently 10 are recognized (Baryshnikov 2000).

M. c. buchneri Baryshnikov, 2000:45. Type locality “Tedzhen, Central Asia (Turkmenistan).”
M. c. capensis (Schreber, 1776:plate 125), see above (mellivorus Cuvier, ratel Sparrman, typicus Smith, vernayi Roberts are synonyms).
M. c. concisa Thomas and Wroughton, 1907:376, see above (buchneri Thomas and brockmani Wroughton and Cheesman 1920 are synonyms).
M. c. cottoni Lydekker, 1906:112, see above (sagulata Hollister is a synonym).
M. c. inaurita (Hodgson, 1836:60), see above.
M. c. indica (Kerr, 1792: 188), see above.
M. c. maxwelli Thomas, 1923:340, see above.
M. c. manilae Pocock, 1946:314. Type locality “The Hadranaut, South Arabia” Yemen.
M. c. signata Pocock, 1909:394, see above.
M. c. wilsoni Cheesman, 1920:335, see above.

DIAGNOSIS. Mellivora capensis (Fig. 1) is a large mustelid (ca. 9 kg) with a coarse gray mantle that extends from crown of head to base of tail. Few sympatric species can be confused with honey badgers. Striped weasels (Poecilogale albinucha) are much smaller (ca. 0.25 kg), with sinuous body forms, 4 white longitudinal dorsal stripes, and fluffy tails; zorillas (Lutotis striatus) also are smaller (ca. 1.1 kg), with a mixture of white spots and lines on the heads, 4 white dorsal stripes, long hairs, and bushy tails (Alden et al. 1995). A coarse gray mantle, often separated from black underparts by a horizontal white line, is distinctive and differentiates
GENERAL CHARACTERS. Pelage is a variable mixture of white and black hairs, from posterior canthus of eyes, across top of head along dorsum, to base of tail. Color of dorsal stripe is white, gray, or gray-brown. Some black hairs are thinly scattered along middle of dorsum. Coat consists of coarse, straight hairs (Burton 1835; Sculler 1900). Tail has gray or white tip (De Winton 1902).

Honey badgers in Africa and Arabian countries have pure white band ca. 25 mm in breadth, dividing gray dorsum from black ventral. This white margin forms concave line across face, running from forehead, ca. 12-15 mm above corner of eye, along upper margin of ear. Margin descends backward through neck, shoulder, ribs, flanks, and trunk, and then ascends to base of tail. Margin is white anteriorly but becomes gray toward tail. Young honey badgers lack dividing line, as do honey badgers in Asia (Finn 1928; Sculler 1900). Color pattern of honey badgers, with dorsum paler than ventrum, may be primitive and functions both as warning to enemies and as concealment to secure prey (Pocock 1903).

Skin is thick and loose, with coarse hair dorsally and scarce hair ventrally. Length of hair is ca. 10 mm on head, 26–35 mm on dorsum, 40–45 mm on flanks, and ≤70 mm on upper part of hind limbs, rump, and tail (Cheesman 1920; Smithers 1983, Wroughton and Cheesman 1920). Diameter of hairs is 0.04–0.15 mm. Straight bristle hairs dominate body, whereas finer hairs comprise underfur. Both types usually are of 1 color throughout their length, namely, all black or all white. However, some white bristle hairs have black tips, and some black bristle hairs have a white band of ca. 5 mm near tip. Underfur generally is sparse, with a length of 18–27 mm (Rosevear 1974). Hairs on posterior part of thighs are long and may form tufts. Hairs on front of forelegs course directly across limb. On sides of neck, layer of black hairs is vertical, meeting perpendicular to white ones, which are longitudinal. Around opening of ears is a circular ring of hairs, ca. 13 mm in breadth. Face and jaws are sparsely haired. A few long black hairs are scattered on chest, belly, and undersurfaces of extremities; however, skin is not concealed. A naked line occurs along inferior surface of tail. Epidermis around anus is also naked (Burton 1835). Width of dorsal band is as follows: 100 mm on head between ears; 90 mm on neck; 150 mm on shoulders; 220 mm at middle of dorsum; 234 mm on posterior part of dorsum (Ognev 1962).

In honey badgers, coat may vary considerably with seasons in the Himalayan Mountains. In winter, underwool is present, and contour hairs of upper surface are abundant and ≤40 mm long. Also, heel of hind foot may be overgrown with hair. These hairs thin out during molting, and underfur disappears completely so that skin is largely exposed in summer, when coat is ca. 16 mm long (Pocock 1941). In Africa, honey badgers lack underwool (De Winton 1902).

As honey badgers age, dorsal generally becomes saturated with black hair, making pelage darker. Head does not darken with age (Pocock 1941; Shortridge 1934). Coarse color of M. capensis is not consistent throughout its range and may be influenced by season, wear, or stain from soil (Hollister 1918; Smithers 1983).

External ear does not have definite laminate pinna standing away from head. Cavities of ear are surrounded above and behind by thickening of integument, which forms a hard ridge. Supratragus consists of oblique ridge. Opposite the ridges is a small raised tubercle, which is a remnant of the tragus and antitragus. A bursa is not present. Rudiments of ear lobes occur around meatus externus; however, they are not visible (Burton 1835; Pocock 1920). An oblique convergence of the margins of the ear closes the opening of the ear when honey badgers dig (Kingdon 1977).

Eyes are diminutive. Maximum distance between canthi is ≤15 mm. This opening leaves little space for eye (Burton 1835). Small and deep-set eyes are longsighted, black, and reflect light at night (Fitzsimons 1919; Jeannin 1936).

Nose is brown (Jeannin 1936). Wide rhinarium has well-defined area encircling nostrils below and laterally. Upper lip is shallow and lacks philtrum (gutter) and median groove, and intranarial pores are not deep, causing nasal hair tufts to be much nearer to its lower than to its upper edge. Lateral slits are short, and upper surface of lip is completely naked. Interdental tuft of facial vibrissae may be absent (Pocock 1920, 1946). Tongue has sharp papillae pointing to rear of mouth (Rosevear 1974). Neck and shoulders are muscular. Forefeet are broad with long, powerful claws, whereas hind foot are more restricted with small claws. Tail is short, cylindrical, and bushy. Two anal glands and 4 mammae are present (Burton 1835; Kingdon 1997; Sculler 1900).

Average body measurements (in mm, with parenthetical range and n) for African honey badgers for males and females, respectively, are: total length of body, 977 (733–950, 11), 908 (870–960, 6); length of tail, 196 (143–230, 11), 206 (185–225, 6); mass (in kg), 6.4 (5–7.5, 9). Average measurements (in mm, with parenthetical range and n) for Asian honey badgers for males and females, respectively, are: total length, 977 (733–950, 11), 908 (870–960, 6, length of tail, 196 (143–230, 11), 206 (185–225, 6); mass (in kg), 6.4 (5–7.5, 9). (9.2 (7.5–10.5, 9), 8.9 (6.2–13.6, 5). Average measurements for African honey badgers for males and females, respectively, are: total length of body, 977 (733–950, 11), 908 (870–960, 6); length of tail, 196 (143–230, 11), 206 (185–225, 6); mass (in kg), 6.4 (5–7.5, 9).

Skull (Fig. 2) is massive with a wide base, short postorbital processes, and robust teeth. Average skull measurements (in mm, with parenthetical range and n) for African honey badgers for males...
and females, respectively, are: condylobasal length, 141 (128–152, 3, 126 (118–133, 2); palate length, 69 (63–72, 3), 43 (33–53, 2); zygomatic breadth, 88 (86–91, 3), 68 (64–75, 3); least postorbital breadth, no data. 32 (32–33, 3—Allen 1924; De Winton 1902; Hollister 1910; Roberts 1932; Thosson 1923; Thomas and Wrangton 1907; Wrangton and Chassamian 1929). Average skull measurements (in mm, with parenthetical range and n) of Asian honey badgers for males and females, respectively, are: condylobasal length, 134 (119–145, 11), 125 (115–134, 10); palate length, 59 (55–62, 15), 56 (50–60, 13); zygomatic breadth, 78 (65–86, 14), 74 (67–80, 12); least postorbital breadth, 30 (24–35, 15), 30 (27–33, 15—Baryshnikov 1967).

DISTRIBUTION. *Mellivora capensis* ranges from the Cape Province in South Africa north to Sudan, Ethiopia, and Somalia on the east and to Niger and Morocco in the west. Honey badgers occur throughout the Middle East as far north as Turkmenistan and southwest Kazakhstan, then eastward to India and Nepal (Fig. 3). In the Indian subcontinent, they are absent from the Malabar Coast, the lower Bengal, and Ceylon (Finn 1929). In Africa, they are absent from the Central Sahara Desert, the Mediterranean littoral, the Nile valley (Egypt), and the Orange Free State (South Africa—Kingdon 1997). Honey badgers occur from sea level (Drake-Brockman 1910) to 4,050 m (Sillero-Zubiri 1996).

FOSSIL RECORD. *Mellivora* has probably been in Africa since late Miocene (12 million years ago). Oldest record of *M. capensis* is ca. 10 million years old, from Ngorora Formation in Kenya (Hendey 1973). Most fossil remains date from the Pleistocene times. *Mellivora benfieldi* described from Langebaanweg, South Africa, may be the most ancestral form to extant species (Hendey 1973). *Eomellivora*, *Promellivora* and *Lycictis* are fossil species from Asia and most likely are not related to *Mellivora* (Hendey 1978). Milk teeth of *Mellivora* and permanent teeth of *Galictis* show morphological resemblance. *Galictis* and *Mellivora* may have had a common ancestor that once inhabited Asia. In middle Miocene times, mellivorines may have arrived from India via Arabia to Africa just before the Red Sea rift opened (Lydekker 1912; Savage 1978).

FORM AND FUNCTION. Dental formula is i 3/3, c 1/1, p 3/3, m 1/1, total 32 (Sclater 1900). Teeth are trenchant (Pocock 1941). *Mellivora capensis* usually lacks m2: 1 specimen retained an m2 on the left side; this m2 was small and came into use before the p3 fully protruded (Lydekker 1912). 13 differs from 1/1 and 2, in being stronger, 3 times larger, and curved inward; 13 resembles c4/c4. Upper canine has tubercle projecting lingually. Upper carnassial has anterior inner cusp. A wide cingulum and a small outer and a larger inner rounded lobe characterize M1. Lower carnassial lacks a metaconid. Premolars increase in size from front to back (Burton 1835; Pocock 1922; Sclater 1900). The large P2 has 2 roots and is somewhat displaced from toothrow toward internal side of corresponding canine. The p3 bears a fairly large internal cusp that occupies one-half the length of tooth. Denticles of p3 are disposed much more externally than those of remaining lower teeth, and they diverge greatly when jaws are closed (Ognev 1962). The p3 of milk dentition has inner tubercle placed near middle of blade (Lydekker 1912). Mellivorines (n = 19) show high degree of teeth abrasion. The omnivorous diet of honey badgers probably causes crowns of molars to be ground away, nearly down to roots (Horin 1971).

An extremely wide base and short frontal postorbital process characterize the massive skull. Before reaching maturity, skull sutures close (De Winton 1902). Lower jaw is held in place by pre- and postglenoid processes (Sclater 1900). Maxillae form broad rims near large external auditory meatus and fuse partly with the occipital. Palate is extremely short and broad. Maxillae processes are compressed dorsally and, paraciline processes are massive (Ognev 1962). Postglenoid foramen is immediately positioned in front of auditory bulla (Pocock 1921). Posterior lacerate foramina are small but somewhat larger than middle lacerate foramina. Auditory bulla protrude far anteriorly, approaching the postglenoid processes (Ognev 1962). Auditory bullae are pronounced, oval, thick-walled, and rough on the surface. Canine foramen is conspicuous near middle of medial border of bulla (Flower 1969). Cavity of bulla is partially divided by an arcuate septum into anterior and posterior chambers (Pocock 1921). Rostrum is short and broad, and nasal turbinates are complex. Skulls have a wide range of size, irrespective of age (Rosevear 1974).

Skulls of males are larger. A confluence of temporal ridges on crown of skull forms a definite sagittal crest usually 5–6 mm high posteriorly. It extends as far forward as postorbital constriction, ranging in width from 6 to 18 mm. In skulls of females, temporal ridges on crown never coalesce to form a definite sagittal crest. Skulls of females are recognized by presence of widely separated temporal ridges (Pocock 1941).

An inward-flaring greater tuberosity and a peaked dorsal surface characterize the calcaneum. It has a smooth posterior articular surface, and cuboid surface is visible from the dorsal aspect (Stains 1976).

Broad feet have large carpal and metatarsal pads in contact with plantar pads. Pollex is short. Forefoot is shorter and wider than hind foot. Digits of forefoot are spread unevenly; distance between digits 1 and 2 is greater than that between digits 2, 3, and 4. Digits 3 and 4 are tightly attached by extended webbing allowing grasping of digital pads. Digit 5 has more freedom of movement. Plantar pad is a large, almost semicircular mass, with 4 II-III-defined elements. A deep integumental groove separates it from the 2 carpal pads. Extremal carpal pad is a large subcircular mass, at least as long and half as wide as plantar pad. Internal carpal pad is smaller and differs in smoothness from the rest of the pads, which are coriaceous. Underside of forefoot is hairless (Pocock 1920, 1922). The 5 toes are armed with enormous claws. Average length of nails is ca. 32 mm. The middle one is longest, ca. 38 mm, and the smallest outer one is <25 mm. Thick nail is rounded at the edges, with a concave undersurface. Edge is reduced to a line, except near tip, where laminate separate. Lateral surfaces of both nails and toes are flat and adapt them for accurate apposition to each other. Therefore, when honey badgers dig, forefoot shapes tightly into broad and powerful spade (Burton 1835; Sclater 1900).

Hind foot is longer and narrower than forefoot and has short claws. Extending along the midline, halfway between plantar pad and heel, is a single large metatarsal pad. Integument of the hind foot is naked and wrinkled. Pads of digits 4 and 5 are closely approximated proximally (Pocock 1920). Pads of digits 1, 3, 2, and 3 are free. Toes are webbed. On undersurface of nails, laminate are separated and form a deep oval fossa between them. These claws do not reach the ground (Burton 1835; Pocock 1922; Sclater 1900). Length of claws on hind feet is ca. 15 mm (Ognev 1962). Carpal vibrissae are reduced to a small wartlike swelling on the skin, which houses tactile nerve endings (Pocock 1922).

Skin is tough, thick, and loose, preventing a predator from firmly grasping it and allowing honey badgers to turn in their skin and bite the attacker (Blumenbach 1825; Fitzsimmons 1919; Sclater 1900). Skin is impervious to stings of bees, fangs of snakes, and teeth of dogs (Blumenbach 1825; Stevenson-Hamilton 1947). Near
the throat, skin is 6 mm thick (Kingdon 1977). Only the underparts have thin skin (Fitzsimons 1919).

Two anal glands lie obliquely backward from the anus, deep within surrounding tissue near the scrotum. Each anal gland measures ca. 30 by 20 mm. Glands open upon a papilla or nipple, just within the anal orifice. External portion of glands consists of spongy tissue traversed by a narrow passage to the opening, which is the secreting area. Internal or odoral portion forms a hollow semilunar space, which may act as a reservoir for storage of ejectional fluid. Secretion is yellow and looks similar to liquid mustard, and its smell can be perceived at a distance of ±5 m (Pocock 1909, 1946). Odor of fluid has a heavy stench (Matschie 1895) but is less sharp than that of striped polecat (I. stratus—Fitzsimons 1919, Selater 1906). Anal pouch is everted whenever honey badgers become excited (Kingdon 1977); fluid is dribbled, not squirited (Estes 1991).

Vulva is tapered at each end, has a vertical slitlike opening (Selater 1900), and is situated ca. 12 mm anterior to anus (Pocock 1946). Urinary and genital openings and clitoris are enveloped by 2 labia. Females have 2 pairs of mammae (Selater 1900).

Prepuce is situated significantly in front of scrotum. Penis has a short, stout baculum that is nearly straight and smooth. Ventrally, os penis has a slight ridge near the head, and proximally it is rounded like a club. Proximal end is thick and wide, forming an almost cup-like distal head with a ventral splan. Apex is sharply curled upward and transversely expanded into a hollowed, somewhat crescent-shaped disk. Rim of disk is interrupted in front by a channel, which is continued as a groove down apex of bone. Measurements in mm of 1 baculum of an adult honey badger are: length, 61; height at proximal end, 9; height at distal end, 5; width of proximal end, 7; dimensions of disk, 13 by 10 (Dyke 1947; Pocock 1920).

ONTOGNHY AND REPRODUCTION. Matting occurs throughout the year (Estes 1991; Smithers 1971; Yaniv and Golani 1987). Gestation period is recorded from 6 weeks (Yaniv and Golani 1987) to 6 months (Shortridge 1934). One or 2 young are born per litter (Shortridge 1904; Yaniv and Golani 1987). They are born and reared in burrows (Shortridge 1904) and may be carried in the mouth (Rosevear 1974).

At 2 days of age, 1 captive honey badger weighed ca. 0.23 kg, was hairless except for a few hairs on the face, and had its eyes shut. In 3 months, the young had fully developed an adult pelage with the white dividing line clearly defined (Anonymous 1973). Claws were fully formed on each foot, front ones measuring 13 mm at 2 weeks of age. Eyes opened at 33 days of age. Teeth began erupting at 36 days and were fully developed at >5 months. When 2 days old, length of head and body measured 197 mm, length of tail was 38 mm, and at ca. 6 months it was fully grown. It uttered squeaks and low guttural sounds during the first weeks, usually at feeding time. Vocalization changed to deep, drawn-out, ominous dragging movement by the front legs at age 5 weeks, and finally to growls at 10 weeks. Attempts at walking progressed from a swimming motion, using all 4 legs at age 2–3 weeks, to a forward dragging movement by the front legs at age 5 weeks, and finally to a trot similar to that of an adult at 8 weeks. Climbing started at 10 weeks (Johnstone-Scott 1975).

ECOLOGY. Honey badgers occur in diverse habitats, including deep forests, subtropical dry evergreen forests, tropical thorn forests; open Acacia, Combretum, and Terminalia woodlands; open riparian (dominated by Acacia albida) woodlands; Tardzii or marshes; floodplain grasslands (dominated by Vezania nigri­tana); bushveld; afro-alpine steppes (Less sandplains; coastal sandveld; and deserts (Marlow 1983; Shortridge 1934). Honey badgers shelter in burrows in or under thick bush, caves, clumps of fallen bamboo, gravelpads, hollow trees, old ruins, rock shelters (between crevices enlarged and deepened), dens excavated by themselves, or abandoned burrows of porcupines (Atherurus africanus and Hystrix cristata), yellow mongooses (Cynictis penicillata), slender (Oertzenia oer.), bat-eared foxes (Oto­zetes sp.); springhares (Pecten capensis); and Cape foxes (Vulpes chama—Blumenbach 1825). Honey badgers are widely blamed for breaking into poultry houses cached in a lair (Kingdon 1977). When living close to humans, honey badgers were historically accused of digging out dead bodies and eating carrion (Burton 1835). In northern India, honey badgers were reportedly dug out by ants or termites and eaten by carnivores (Eaton 1976).

Honey badgers are omnivorous and feed on insects, amphibians, reptiles, birds, and mammals, as well as roots, bulbs, berries, and fruits (such as bet; Ziziaus juba­bo—Roberts 1977). Favorite foods are termites, beetles, and oval larva of honey bees (Hymenoptera), which they can maintain for hours. Honey badgers may be damaged by sudden, rapid turns, which cause the massive trunk limits bending capacity, arch the trunk laterally (especially the neck, back, and legs), and elevate the anterior part of the body vertically (front legs lose contact with ground). Even though the last turning behavior costs the animals more energy, the rotation around the longitudinal axis of the trunk results in a minimal turning radius and therefore a minimal moment of inertia. Thus, smoothness between turning
and forward movement in the new direction or a halt may be optimized (Eilam 1994). When 2 captive honey badgers are released together in an enclosed yard, a fixed sequence of bodily rotations is observed. This so-called ritualized fighting comprises whole-body rotations (3 types: pivoting, rolling, and tumbling), squatting, and forward movement. The most submissive honey badger is relatively immobile and emits the most fixed-response sequences, whereas the most dominant honey badger is extensively mobile and has the most variable response sequences (Yaniv and Golani 1987).

Female honey badgers forage in a relatively small area, covering ca. 10 km/day. They zigzag short distances from bush to bush, digging on average 10.2 holes/km. Males engage in long-distance foraging. One male, from a 27 km/day. Unlike females, the mean straight-line distance between dens from 1 day to the next was ca. 2.5 km for short-distance foragers (n = 12) and ca. 10.1 km for long-distance foragers (n = 2—Kruuk and Mills 1983). Occasionally, after foraging in a particular area for most of the night, a male honey badger may suddenly move off to a location 200 km away, where it may meet up with other adult-sized honey badgers. On 1 occasion in Mano Poole, Zimbabwe, 6 animals met up; they showed no aggression but continuously uttered a wide range of grunts, hisses, squeaks, and whines while rolling in the sand, sniffling each other, and scent marking. Such gatherings may last >18 min, and the honey badgers may retreat to the same den during the day (Begg 1995).

When the vouch of prey, honey badgers trot along with the nose a few centimeters off the ground and often with the tail elevated slightly above the level of the back (Fitzsimons 1919; Stevenson-Hamilton 1947). On 1 occasion, an individual was observed for 4 h as it made 5 excursions from its den. Making a large oval, it traveled ca. 300 m each time, after which it returned to its den for 3–13 min. It foraged in all directions from the den, overlapping with previous excursions and reexamining previous feeding spots. The excursions were 20–40 min in duration. As the honey badger trotted along, it examined the ground with its nose, sometimes stopping and circling. While smelling, the animal scraped with its forefoot and sometimes entered small holes. Several times it squatted and dabbed its anal glands on the ground. Taller plants nearby were not scented. After marking, it continued foraging without reexamining the scented spot (Frame and Frame 1977).

Most food is obtained by digging particularly close to bushes (mostly Acacia haematoxylon or Acacia mellifera). Honey badgers approach these bushes from downwind 94% of the time (n = 50—Kruuk and Mills 1983). Honey badgers use the same behavior as sandtarts (O. afer) foraging in a hole and then cocking the head, a behavior for a response (Kingdon 1977).

When honey badgers eat, food is held between the front claws while the forelegs rest on the ground (Watson 1950). Beehives are opened by tearing away wood of trees or by scooping out the comb from between cracks of rocks with claws of forefeet (Fitzsimons 1919; Hoesch 1961). Anal secretions may be used to inundate insects when rafts of bees are present. Comb cells are removed from the comb with incisors. In Tanzania, >10% of apes are damaged by M. capensis in a year (n = 56—Kingdon 1977). Hardened earth of termite mounds and trees, remnants of the wood of leaves and branches, and the comb with incisors. In Rwanda, >10% of apes are damaged by M. capensis in a year (n = 56—Kingdon 1977). Hardened earth of termite mounds, eagle owls (Bubo africanus), black-backed jackals (Canis mesomelas), and adult palm civets (Paradoxurus lagotis) are eaten (Fitzsimons 1919; Kingdon 1977). Honey badgers raid tents of tourists or campsite garbage containers (Begg 1995) and may visit residential trash cans nightly, overturning them to find food (Ivy 1970).

Honey badgers can live in the presence of eagle owls (Bubo africanus), black-backed jackals (Canis mesomelas), and adult palm civets (Paradoxurus lagotis). Honey badgers raid tents of tourists or campsite garbage containers (Begg 1995) and may visit residential trash cans nightly, overturning them to find food (Ivy 1970).

Mellivora capensis is known for its energy, endurance, and strength when excavating burrows, fighting to death prey, opening closed boxes, or breaking open cages (Fitzsimons 1919). Its bite is savage and tenacious (Sclater 1900). One individual wrestled with a python of 3–4.5 m length for ca. 15 min, killing and eating it (Anonymous 1964), whereas another carried on a fight for >6 h, finally being killed by the python (Proturion 1989). When followed by humans, it may advance aggressively with a trot, growling and showing its teeth with lips curled back and head held high. Wounded individuals display similar ferocity (Smithers 1971).

Vocalizations include a harsh grating sound between a growl and a hiss, comparable with screams made by bear cubs (Dunbar-Brander 1927; Stevenson-Hamilton 1947). The grating sound serves as a high-pitched screaming bark or “baa-ha-ha” (Smithers 1971, 1983). Vocalizations of honey badgers are different according to the tongue (Sikes 1963). Urine dabbing, defecating in holes, and anal scent marking may be a purposeful marking of a home range, because such sites are often explored by other individuals (Kingdon 1977). Some tame honey badgers stop using their anal glands (Fitzsimons 1919; Porock 1980).

The symbiotic relationship described between M. capensis and the greater honey guide (Indicator indicator) is firmly entrenched in literature. In this mutual association, greater honey guides, which subsist mainly on beeswax, guide honey badgers to nests of bees (Dean et al. 1989). The bird, perched on a tree, utters an increasing chatter, followed by a rapidly filled box of matches shaken rapidly lengthwise (Friedmann 1955). As soon as it has attracted attention of a honey badger, it flies a few meters ahead and settles on another branch, where it continues chattering. The bird repeats this display, leading the badger into the vicinity of a bee hive. The route taken to the bee’s nest, except when only a few meters away, is never a straight line but circuitous, meandering, or even crossing (Friedmann 1955; Rosevear 1974). The journey can take from a few seconds to >0.5 h, with a distance ranging from a few meters to 3 km. Having arrived near the nest of the bees, the greater honey guide remains perched silently on a nearby branch. It does not indicate the exact location of the hive but waits patiently, sometimes 1.5 h, for the honey badger to find it. Should the latter fail to locate the bee hive, the bird will try to lead it to another. Once the honey badger has opened the nest and eaten its share, the greater honey guide will feed on the bee larvae and pieces of comb left behind (Friedmann 1955).

Although the 2 animals may occur together at nests of bees, complete observation of this behavioral sequence, from initial attraction by a greater honey guide of a honey badger, through stages of guiding, discovery and breaking open of a nest, does not exist (Rosevear 1974). The symbiosis may have evolved between early man and the bird and may have mistakenly been described to occur between greater honey guides and honey badgers (Dean et al. 1990). In India, this relationship is unknown (Finn 1929).

CONSERVATION STATUS. Throughout its range, M. capensis is uncommon, and areas in which it is rare or absent are increasing. Persecution by beekeepers and livestock farmers and susceptibility to feline and canine diseases are causes of decline (Kingdon 1997; Smithers 1983). In South Africa, unsuitable trapping during animal control programs causes death of the animal (Stuart 1981) and has resulted in the honey badger being on the vulnerable species list (Smithers 1986). The honey badger is an endangered species in National Park W, Niger (Poche 1973).

GENETICS. Two proteins that have been sequenced for M. capensis are cytochrome c oxidase subunits 2 components of hemoglobin. Primary structures of the 2 components consist of 2 dissimilar alpha-chains and 1 similar beta-chain. Alpha-chains differ in 1 residue at position 34 (Ala to Val) only. A high degree of homology is firmly entrenched in literature. In this mutual association, greater honey guides, which subsist mainly on beeswax, guide honey badgers to nests of bees (Dean et al. 1989). The bird, perched on a tree, utters an increasing chatter, followed by a rapidly filled box of matches shaken rapidly lengthwise (Friedmann 1955). Although the 2 animals may occur together at nests of bees, complete observation of this behavioral sequence, from initial attraction by a greater honey guide of a honey badger, through stages of guiding, discovery and breaking open of a nest, does not exist (Rosevear 1974). The symbiosis may have evolved between early man and the bird and may have mistakenly been described to occur between greater honey guides and honey badgers (Dean et al. 1990). In India, this relationship is unknown (Finn 1929).

REMARKS. The generic name Melivora is from the Latin mel meaning honey and vorus meaning to devour (Begg 1974). The specific epithet capensis refers to the Cape of Good Hope, where Schreber (1776) collected the type specimen. M. capensis was named a badger because of its similarity to European badgers (M. meles) in respect of color, form, and gait (Smithers 1983). The common name honey badger comes from its fondness for honey and the larvae of wild bees (Rosevear 1974). Owing to the aggressive
rattling grunt it makes, Dutch settlers in South Africa gave the honey badger the name ratel (Ivy 1970). The Sinhali name for honey badger is gorapt, which means grave-digger (Roberts 1977:124). The Luganda name ntualirm means that which does not hear and is derived from the observation that the ears of the honey badger are reduced (Watson 1950:201). Many other vernacular names exist. Natives in Somalia hold a firm belief that when a honey badger bites a man, he loses his fertility. As a result, they are afraid to come near the animal (Drake-Brockman 1910).

T. I. Best inspired J. M. Vanderhaar to write this account, critically evaluated earlier drafts of the manuscript, and helped summarize the taxonomy. We thank A. M. Coffman, B. Williams, and other personnel of interlibrary loan departments at the Auburn University, the University of Michigan, and the University of Saskatchewan for assistance in obtaining articles from other institutions. We thank P. Myers for access to the University of Michigan Museum's Mammalogy Division Library. For more detailed information on the ecology and behavior of honey badgers in South Africa, we recommend the research of C. Begg (in press) as a future reference. J. M. Vanderhaar extends special thanks to her husband, Tom, and son, Tristan, who maintained their affection throughout her 6-year-long fascination with M. capensis.

LITERATURE CITED

KEHR, R. 1792. The animal kingdom, or zoological system, of the celebrated Sir Charles Linnaeus; class I. Mammalia. Being a translation of that part of the Systema Naturae, as lately published with great improvements by Professor Gmelin, together with numerous additions from more recent zoological writers and illustrated with copperplates. J. Murray, London, United Kingdom 1:1–400.

RODEWALD, K., C. BRAUNMUTTER, AND R. GOLLENTHO. 1988. *Car-
Mammal Species

721—Mellivora capensis

Associate editors of this account were ELAINE ANDERSON and SERGE LARIVIERE. Editor was VIRGINIA HAYSSEN.

J. M. VANDERHAAR, DEPARTMENT OF ZOOLOGY AND WILDLIFE SCIENCE, 331 FUNCHESS HALL, AUBURN UNIVERSITY, ALABAMA 36849-5414. Present address: 1521 NORTHWOOD STREET, ANN ARBOR, MICHIGAN 48103. Y. T. HWANG, DEPARTMENT OF BIOLOGY, UNIVERSITY OF SASKATCHEWAN, 112 SCIENCE PLACE, SASKATOON, SASKATCHEWAN S7N 5E2, CANADA.