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Regional Flood Relationships 
by Nonparametric Regression 

D. Gringras, M. Alvo and K. Adamowski 
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Since some theoretical assumptions needed in linear regression are not always 
fulfilled in practical applications, nonparametric regression was investigated as 
an alternative method in regional flood relationship development. Simulation 
studies were developed to compare the bias, the variance and the root-mean- 
square-errors of nonparametric and parametric regressions. It was concluded 
that when an appropriate parametric model can be determined, parametric re- 
gression is preferred over nonparametric regression. However, where an appro- 
priate model cannot be deternmined, nonparamctric regression is preferred. It was 
Sound that both linear regression and nonparametric regression gave very similar 
regional relationships for annual maximum floods from New Brunswick, Cana- 
da. It was also Sound that nonparametric regression can be useful as a screening 
tool able to detect data deficient relationships. 

Introduction 

Estimation of design floods for a watershed with no data can be improved by region- 
al analysis procedures which incorporate relevant information from other water- 
sheds. Regional analysis involves three basic steps: single station flood frequency 
analysis, homogeneous region delineation, and regional relationship development. 
In this paper, the latter step is further investigated, considering the multiple regres- 
sion approach. 
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In regional flood frequency analysis, homogeneous region delineation attempts to 
define regions having similar hydrological characteristics andlor flood related vari- 
ables in order to allow information transfer to ungauged sites. Of the numerous ap- 
proaches to this delineation, some of the data-based techniques involve using multi- 
variate statistical methods (Cavadias 1990) while others involve finding regions 
with a single flood frequency distribution (Hosking and Wallis 1993). More physi- 
cally-based approaches involve delineating areas with floods of similar mechanisms 
(Gingras and Adamowski 1993). In the multiple regression approach, linear rela- 
tionships between logarithmically transformed design floods and physiographiclcli- 
matic characteristics in each of the delineated regions are then developed (Kite 
1977). 

Inferences based on linear regression and least-squares approaches require sever- 
al assumptions. Ordinary least-squares analysis requires that the relationship be lin- 
ear in the parameters, that there be constant variance of the "errors" about the regres- 
sion line, and that these errors be uncorrelated and normally distributed with mean 
zero. All of these assumptions are often violated in practical applications (Holder 
1985). Generalized least-squares analysis (Tasker and Stedinger 1989) will over- 
come some of the deficiencies of ordinary least squares because it takes into consid- 
eration the fact that the standard errors of the dependent variables (the design floods) 
are different, mainly due to differing record lengths, and that some correlation exists 
among the annual maximums at the various sites within a homogeneous region. 

A major concern in regional analysis is finding the appropriate relationship 
between the design floods and the relevant physiographiclclimatic variables. There 
exists no physical justification for the selection of a linear relationship between log- 
arithmically transformed data as is typically chosen. A nonlinear relationship may 
be appropriate in some instances in describing the variations of logarithmically 
transformed design floods and physiographic/climatic variables. A misspecification 
of the regional relationship, by using a linear model instead of a nonlinear one, for 
example, will result in a systematic error or bias which ultimately results in misspec- 
ified design floods at the ungauged sites. 

Another concern is that the scatter around the regression line for a particular ho- 
mogeneous region is often not uniform. Because of differences in basin slopes and 
in the amount of wetlands, there is a large variation in flood magnitude for a given 
basin size, particularly for the smaller basins. For example, a steep and rocky ten kil- 
ometre square basin can generate a given design flood perhaps as much as ten times 
larger than a ten kilometre square basin on a flat slope comprised of a large percent- 
age of lakes. If part of the homogeneous region is much steeper or wetter than the re- 
mainder of the region, the variations around the regression line are not expected to 
be normally distributed and one may then consider the use of indicator variables or 
of weighted least squares. As well, one may often wish to incorporate further inde- 
pendent variables in the regional relationship but there may exist degrees of freedom 
limitations because of small sample size. 
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An alternative approach seeking to alleviate some of these deficiencies is nonpar- 
ametric regression, which is based on fewer assumptions. Nonparametric regression 
requires no specification as to the form of the relationship between the variables. As 
well, when the error variance changes monotonously with the explanatory variables, 
nonparametric regression is expected to perform better than a least-squares fit due to 
its local character. It is not claimed, however, that nonparametric regression can 
solve all the problems raised by the application of linear regression. 

Nonparametric regression has been applied in hydrology to predict groundwater 
levels from runoff (Adamowski and Feluch 1991), in a long-range streamflow fore- 
casting model (Smith 1991), and to identify relationships between local daily pre- 
cipitation and average pressure height (Matyasovszky et al. 1993). This paper ex- 
plores the use of nonparametric regression for regional flood relationship develop- 
ment and compares the results obtained with those of parametric regression. The 
bias, the variance, and the root-mean-square-errors of the estimates from parametric 
and nonparametric regression are evaluated through simulations. Nonparametric re- 
gression is also found to assist in model selection and is useful as a screening tool for 
pointing out data deficient relationships. 

Theoretical Development 

Nonparametric Frequency Analysis 
The nonparametric regression estimate is defined as a conditional mean which can 
be expressed as the ratio of two integrals involving a probability density function. 
Therefore, theoretical developments dealing with nonparametric density functions 
are presented first. 

Nonparametric density estimation has been successfully employed in single sta- 
tion frequency analysis by several researchers including Adamowski (1989), Bard- 
sley (1989), and Guo (1991). They found the nonparametric approach useful in 
overcoming some of the drawbacks of conventional parametric methods related to 
distribution selection, tail behaviour, and unimodality among others. It was conclud- 
ed that nonparametric methods were particularly suitable for multimodal annual 
flood data following mixed distributions (Gingras and Adamowski 1992). 

The probability density functionflx) can be estimated in a nonparametric manner 
on the basis of a random sample x l  ... x, by (Adamowski 1985) 

1 
n X-x  i j ( x )  = -  1 K( 7 1 
i=l 

where K ( )  is a kernel function, itself a probability density function such as a normal 
or rectangular distribution, and h is a smoothing factor to be estimated from the data. 

The process of nonparametric density estimation is similar to that of building a 
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histogram with a class interval of width h. In a histogram, a rectangular block of 
height llnh is added at the center of the class interval to which a given data point be- 
longs. The final histogram frequency distribution is the sum total of all blocks, each 
one of area lln. In nonparametric frequency, a kernel function centered at the data 
point location itself is added and the final nonparametric density is the sum total of 
all kernels. 

The choice of the kernel function is not crucial to the performance of the method 
as various kernels lead to comparable estimates (Prakasa Rao 1983). However, it 
must satisfy the following conditions (Silverman 1986) 

j x 2 ~  (x) dx < - ( 4 )  

A standard Gaussian kernel was selected in this study and is given by 

The selection of the smoothing factor h in Eq. (1) is, however, critical. One method 
of computing h is to minimize, by means of a cross-validation technique, the inte- 
grated mean-square-error (IMSE) (Silverman 1986) 

where expectation is taken over the random variables xl ... x, definingf(x). Because 
IMSE must be minimized with regard to h, the last term, which does not involve 
f(x), can be discarded. 

In cross-validation, estimates ofjfx) are constructed each time using all the data 
points but one. Thus, f-i(x) is the nonparametric kernel estimate ignoring a single 
data point x; 

It has been shown (Silverman 1986) that 

Inserting Eq. (9) into Eq. (7) and ignoring its last term, the risk function to be mini- 
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mized, R(h), which depends on the smoothing factor h, is 

The basic principle of least squares cross-validation is to construct an estimate of 
R(h) from the data themselves and then to minimize this estimate over h to give the 
smoothing factor. It has been shown (Rudemo 1982), that Eq. (lo),  for a normal ker- 
nel as defined by Eq. ( 5 ) ,  is equivalent to 

where 

Setting the derivative of R(h) with respect to h equal to 0 results in the following 
equation 

Therefore, the value of h can be determined numerically by solving Eq. (12). Scott 
and Terrell (1987) have shown that the cross-validation procedure leads to consis- 
tent and asymptotically optimal nonparametric density estimates. 

Nonparametric Regression 
Nonparametric regression, which does not require strong assumptions about the 
shape of relationships, is considered a supplement to parametric analyses (Altman 
1992). In nonparametric regression, the predicted value of the response variable is a 
conditional mean defined as the ratio of the integral of a probability density function 
and of a probability density function, each of which is estimated nonparametrically. 
The optimal estimate of a function Y given that variable X equals x can be expressed 
as follows (Muller 1988) 

where f (x,y) is the joint density function of X and Y, and f, () is the marginal density 
function of X. 

A nonparametric estimate of the joint bivariate density function can be expressed 
as 
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where h, and hy refer to the smoothing factors associated with x and y. 
An estimate of the conditional mean of Y given X = x is obtained by substituting 

Eq. ( 1  4) into the right-hand side of Eq. (1  3), and is given by 

Similarly, in multivariate form, with a single dependent variable y and x = (x,, x2 ... 
xp)  a vector of dimension p corresponding to the physiographic/climatic variables, 
the nonparametric density function is 

- 
1 

n 1 Y-Y; P I x-x Zi 
f ( z . y ) = ;  1 T K ( ~ )  n T ~ ( -  h z  

1 
i = 1  y y Z=1 Z 

where 1 is the dimension counter going up t o p  variables. 
Incorporating the multivariate version of Ax) from Eq. (16), in nonparametric 

form, the equation for the optimal estimate from a regression of Y on X becomes 
(Muller 1988) 

with the variables as defined earlier. 
To obtain the values of the smoothing factor hl, least squares cross-validation is 

once again used. A risk function, similar to Eq. (1 1) but in a multivariate form, must 
be developed. Its derivative with respect to the smoothing factors must equal zero, 
resulting in an equation to be solved for all p values of hl. This equation is (Ada- 
mowski and Feluch 1991) 

n d . .  
4 n f i  -n - +' 1 exp(+) ((I-- 
n- 1 1-1) = O  * l=l,i j . 

( 1 8 )  

where 
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An important observation is that the nonparametric approach does not require the as- 
sumptions of linearity, constant variance and normality for the distribution of errors 
about the regression line, which rarely applies in regional flood relationship devel- 
opment based on linear regression. 

One concern in the use of nonparametric regression is related to the sample size 
available for regional analysis. It has been shown (Silverman 1986) that for density 
estimation the sample size required to obtain a given mean-square-error increases 
substantially as the number of independent variables increases. Although most re- 
gional equations rarely involve more than two significant variables, there exist many 
applications of multiple regression in hydrology involving more than two significant 
variables (Haan 1977). The results in this article apply to these cases as well. 

Numerical Analysis 

Simulations 
In order to compare parametric and nonparametric regression, data from three mod- 
els (linear: y = 3x + 1 + e; quadratic: y = x2 + 1 + E; exponential: y = e 0 . 8 ~  + e)  were 
generated. The simulated data consisted of sets of 30 data points corresponding to an 
independent variable x varying from 0.1 to 3.0 by increments of 0.1. The errors E 

were generated from a uniform distribution ranging from either -0.1 to 0.1 or from 
-0.5 to 0.5, to be referred to as the small and large errors respectively. 

Five hundred sets of 30 data points were generated from the three models with 
small and large errors. A stepwise polynomial model (either y = a0 + alx or y = a0 + 
alx + a2x2), an exponential model (y = ae!,~), and nonparametric regression were fit- 
ted to each set of 30 data points. Because a logarithmic transformation was em- 
ployed to fit the exponential model, it is understood that the estimates will be biased 
(McCuen et al. 1990). The bias, variance, and root-mean-square-errors were com- 
puted in each case at locations x = 0.7, 1.5 and 2.3, resulting in Tables l , 2  and 3. The 
first order polynomial model was correct for the linear data, the second order poly- 
nomial was correct for the quadratic data, while the exponential model was correct 
for the exponential data. 

An estimate of the bias is given by 

Where y,,,,, is the true value of the dependent variable at a given x; based on the 
chosen data generating model, and 9; is the value predicted by the regression for that 
same xi. The sample size, n, is equal to five hundred. 

The sample variance V is defined as 
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Table 1 - Bias from Simulations 

Bias at ~ 0 . 7  x=1.5 x=2.3 
PM EM NR PM EM NR PM EM NR 

Table 2 - Variance from Simulations 

Variance 
at PM 

L1 0.00021 
L2 0.00533 
QI 0.00021 
Q2 0.00532 
El  0.00021 
E2 0.00532 

Table 3 - Root-Mean-Square-Errors from Simulations 

RMSE's x=0.7 x=1.5 x=2.3 
at PM EM NR PM EM NR PM EM NR 

L1 0.0146 0.2052 0.0234 0.0100 1.6935 0.0235 0.0139 3.5915 0.0241 
L2 0.0730 0.2078 0.3138 0.0498 1.7037 0.3092 0.0696 3.5976 0.3042 

Q1 0.01 46 0.9728 0.0562 0.01 49 0.1095 0.0432 0.01 43 2.47 16 0.0445 

Q2 0.0730 0.9602 0.2728 0.0743 0.1140 0.3463 0.0714 2.4650 0.4893 

El 0.1428 0.1906 0.0507 0.0497 1.1202 0.0469 0.2047 3.4600 0.0801 

E2 0.1594 0.2092 0.2772 0.0888 1 .I257 0.3510 0.2167 3.4578 0.403 1 

L1 - y=3x+l+El L2 - y=3~+1+€2 € 1  -U(-0.1,O.I) 
Q1 - Y = x ~ + ~ + E I  Q2 - y=x2+1 +EZ €2  - U(-0.5,0.5) 
El - y=eo,8x+l~~ E2 - y=e0,8x+e2 

PM - polynomial model; EM - exponential model; NR - nonparametric regression 

80 
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The estimate of the root-mean-square-error RMSE is defined as 

Table 3  reveals that, when fitting a correct polynomial model to the generated data, 
as is the case of the first order linear model for data coming from y = 3x + 1 + E or 
the second order polynomial for data coming from y = x* + 1 + E, the RMSE's are 
uniformly less for the parametric fit over the range of x.  While both the correct par- 
ametric and nonparametric regressions have small biases, the larger variance of the 
nonparametric regression leads to a larger RMSE. 

Fitting an exponential model to any of the generated data sets resulted in large 
RMSE's because of the large bias present due to the logarithmic transformation. 
This is even the case for data generated from the exponential function y = e0.8~ + E. 
Even though the presence of bias is known (McCuen et al. 1990), logarithmic trans- 
formations are nonetheless still commonly employed in hydrology. 

Because of the poor fit of the exponential model, as shown in Table 3 ,  either non- 
parametric regression or the polynomial fit resulted in lower RMSE's for the data 
generated from an exponential function. For the generated exponential data with 
small errors, the nonparametric regression, which always exhibits low bias, fol- 
lowed the pattern of the data and resulted in the lowest RMSE's. 

Because nonparametric regression is sensitive to variation around the points due 
to its local character, it exhibited a large variance under large errors. As a conse- 
quence, as shown in Table 3, an incorrect but not entirely inappropriate second order 
polynomial model provided the lowest RMSE's for the generated exponential data 
with large errors. 

Because nonparametric regression always provides an estimate with low bias, 
when the variation around the data points is small, it will provide a better estimate in 
terms of mean-square-errors except for the correct parametric model, as long as the 
latter can be fitted in an unbiased fashion. When the variation around the points is 
large, nonparametric regression will tend to follow the data points too closely, result- 
ing in large mean-square-errors. 

In hydrology, the variations around the regression line are often small, especially 
after a logarithmic transformation. Therefore, if an appropriate parametric model 
can be selected for the data, a parametric regression with parameters estimated from 
that data is preferable to a nonparametric regression. If selection of a correct model 
is difficult or impossible, then nonparametric regression should be considered. The 
selection of the appropriate model when one independent variable is involved can be 
accomplished by a visual fit of the model to the data as well as by residual analysis. 

In any number of dimensions, one way to determine the appropriateness of a pos- 
tulated model consists of performing both parametric and nonparametric regres- 
sions. Since the nonparametric regression will always exhibit a low bias, if both re- 
gressions provide very similar estimates, then most likely the postulated model is 
appropriate. Otherwise, the postulated model is inappropriate. Therefore, nonpara- 
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metric regression can also assist in model selection. More sophisticated tests using 
nonparametric regression exist to assess the performance of parametric models (Az- 
zalini et al. 1989). 

Regional Relationships 
Regional analysis was performed using annual maximum floods from 53 hydromet- 
ric stations available in or surrounding the province of New Brunswick in Atlantic 
Canada. The stations, which had at least 10 years of record and were from natural 
flow stations or those with slight regulation, are shown in Fig. 1. They are also list- 

-ion- ed in Table 4 along with their drainage area and mean annual precipitation. Re,' 
a1 relationships were developed on a province-wide basis and for four homogeneous 
regions found in a earlier regional study (Inland WatersILands Directorate, Environ- 
ment Canada and the New Brunswick Department of Municipal Affairs and Envi- 
ronment 1987). 

Because of the great uncertainty involved in estimating floods for return periods 
much greater than the sample length, estimates of the 50 and 100-year floods for 
records less than 15 years in length were not included. Thus, the province-wide 
equations for the 50 and 100-year floods included 45 stations. The smaller homoge- 
neous regions were also similarly reduced. 

OlBiOO1 

OIBEOOI 

OIAC002  

1016500 01BOOOl 

OIAJoo4 W OlAJOIl  
s 

o l ~ ~ o t o  p c * L o o r  
01AJ003 p 

Fig. 1. New Brunswick hydrometric stations. 
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Table 4 - New Brunswick Hydrometric Station Information 

Station 
Number 

- 

Drainage Mean Annual Two-Year 
Area (km2) Prec.(mm) Flood (msis) 

Northwestern 
01 AD003 
0 1 AF003 
0 1 AGO02 
0 1 AGO03 
0 1 AH005 
01 AJ003 
0 1 AJ004 
01AK001 
0 1 AK007 
0 1 AK008 
Ol BCOOl 
01 BE001 
01 BJ004 
01 BJ007 
01 BD002 
OlBFOOl 
101 3500 
10 16500 
Southern 
01AM001 
0 1 AP004 
0 1 AP006 
01 AQOOl 
0 1 AQ002 
0 1 AR006 
0 1 AR008 
0 1 BU003 
01 BU004 
01 BV005 
0 1 BV006 
01 BV007 
0 1 DL00 1 
Central 
OlAJOlO 
OlAJOll 
0 1 AK005 
0 1 AL002 
0 1 AL004 
0 1 BK004 
OlBOOOl 
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Table 4 - New Brunswick Hydrometric Station Information cont. 

Station 
Number 

Drainage Mean Annual Two-Year 
Area (km2) Prec.(mm) Flood (m31s) 

Central 
01 BOO02 61 1 1180 130 
OlBPOOl 1340 1180 219 
01 BQOOl 948 1130 182 
Eastern 
01AN001 34.4 1180 8.85 
0 1 AN002 1050 1130 204 
0 1 AP002 668 1040 139 
OlBJOOl 363 988 72.7 
0 1 B J003 510 1050 112 
OlBLOOl 175 1010 40.0 
0 1 BL002 173 1130 32.6 
0 1 BL003 383 1090 69.7 
01 BOO03 484 1080 93.5 
0 1 BROO 1 177 1050 33.8 
OlBSOOl 166 1070 45.8 
0 1 BU002 39 1 1030 90.9 

The design floods were estimated nonparametrically by kernel density function 
(Adamowski 1989) and were then subjected to a linear regression using physio- 
graphic and climatic parameters such as drainage area, mean annual precipitation, 
percentage of lakes and swamps, and average water content of snow on March 3 1 as 
computed for the basins draining to the hydrometric stations in a previous study (In- 
land WaterILands and New Brunswick Department of Municipal Affairs and Envi- 
ronment 1987). The following linear parametric regression models were assumed 

where Q is the design flood of a given return period, xl  and xz are physioclimatic 
variables, while a, b, c, d and e are regression coefficients for the linear regression. 
For nonparametric regression, a relationship between the logarithms of the variables 
was found. The most significant factor to enter the equation was always drainage 
area, with mean annual precipitation always coming second. The addition of further 
variables was not statistically significant. 

On a visual basis, as shown for example by Fig. 2, nonparametric regression and 
linear regression provide relationships not very different from each other on a prov- 
ince-wide basis where there are 53 data points. Residuals of both the parametric and 

Downloaded from http://iwaponline.com/hr/article-pdf/26/2/73/4386/73.pdf
by guest
on 14 May 2021



Regional Flood Relationships by Nonparametric Regression 

1 92 VS DA - PROVINCE-WIDE 0 

.A I Fig. 2. Province-wide two-year flood linear 
lo' 

9 ,  . . , , . .,, . , .- ( . .  . . . a . . . ... 
and nonparametric regressions. 

the nonparametric regressions, shown in Figs. 3 and 4 for the one- and two- variable 
regressions, have no pattern, suggesting a correct relationship. While a lack of pat- 
tern is typical of nonparametric regression residuals at all times, it is only typical of 
parametric regression residuals when an appropriate model has been chosen. The 
study of the residual plot for a parametric regression helps in detecting structural 
problems in the model. 

For the smaller homogeneous regions, where the number of data points varied 
from 8 to 18, there is a greater difference between the linear and the nonparametric 
regressions, as the nonparametric regressions tend to follow very closely the smaller 
quantity of data points. However, the flood estimates from both approaches tend not 
to be very different, again implying the adequacy of a linear model. 

The above would suggest that the postulated linear model is appropriate. Thus, 
nonparametric regression for regional relationship development in New Brunswick 
does not lead to a significant improvement over linear regression and is not adding 
to the confidence of the latter. In situations where the relationship is nonlinear, how- 
ever, nonparametric regression has been shown to be an improvement over linear re- 
gression (Adamowski and Feluch 199 1 ; Smith 199 1). 

Screening Ability 
The capabilities of nonparametric regression as a screening tool can be illustrated by 
means of some examples. Fig. 5 shows the nonparametric regression for the 2-year 
flood of the Eastern region which exhibits a large gap in the data. Linear regression 
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U N U R  REGRESSION RESIDUALS - 02 VS OA -1 PROVINCE-WIDE EOUATION n 

3 

NONPARAMCTRIC REGRESSION RESIDUALS - 02 VS DA 
PROVINCE-WIDE EOUATION a 

Fig. 3. Residuals for province-wide two-dimensional regressions. 

0 

" 1d ' "" id id 
DISCHARGE 

NONPARAMCTRIC REGRESSION RESIDUALS - 02 VS DA-MAP 

, . , " " " ; d  , """;d ' ' DISCHARGE 

Fig. 4. Residuals for province-wide three-dimensional regressions. 
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Fig. 5. Eastern Region two-year flood Fig. 6. Linear relationship over a partial 
nonparametric regression. range. 

imposes a linear relationship over the range of the data independently of any gap 
which may exist. 

Fig. 6 shows a relationship where the variation between the variables is not linear 
over the entire range. If one had data only for values of x less than 4.0 and greater 
than 6.0 and were to fit a linear regression, then one might erroneously conclude that 
the entire relationship was linear. Nonparametric regression, of course, would not 
yield a correct relationship between 4.0 and 6.0, but by not providing one it would 
inspire caution in the use of linear regression at that location. 

It might be argued further that with sufficient data for values of x ranging from 0.0 
to 10.0 in Fig. 6, a nonlinear component would be noticed. If one were unable to fit 
an adequate nonlinear model for the central portion of the data, then a nonparamet- 
ric regression might be chosen over a parametric model. 

Figs. 7 and 8 show the three-dimensional relationships for, respectively, linear 
and nonparametric regressions. The linear relationships are parallel, as expected, 
while the nonparametric relationships meet and cross each other for concurrently 
low values of drainage area and of mean annual precipitation, and for concurrently 
very high values of these two variables. Fig. 9 reveals that there are little data with 
both low drainage area and low mean annual precipitation, or both very high area 
and precipitation. Thus, linear regression provides an unrealistic assurance in pre- 
dicting floods for concurrently low and concurrently high values of area and precip- 
itation as it yields a relationship in instances where there exist no data to support it. 
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07. VS DA - PROW=-WIDE 
MAP UNO - NONPARAUETRIC 

YAP 1 I100 I 

Fig. 7. Province-wide three-dimensional Fig. 8. Province-wide three-dimensional 
two-year flood linear regression. two-year flood nonpararnetric re- 

gression. 

variations. 
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By use of a scattergram and careful investigations of the ranges of data, the fail- 
ings of linear regression in the above examples could have been detected without us- 
ing nonparametric regression as a screening tool. However, when the number of di- 
mensions in a regression increases, such investigations can become very tedious. 
This could lead to the use of a linear relationship where it should not be employed 
and to providing the user with an unwarranted assurance in its application. A com- 
parison of linear and nonparametric regressions should quickly point out potential 
problem areas when both regressions are not very similar. 

Conclusion 

Simulations showed that if an appropriate parametric regression model can be cho- 
sen, its use will lead to lower root-mean-square-errors than a nonparametric regres- 
sion. If an appropriate model cannot be identified, nonparametric regression should 
be employed. In regional flood frequency analysis with data from New Brunswick, 
linear regression and nonparametric regression were found to provide equally good 
regional relationships. However, nonparametric regression was found to be useful as 
a screening tool pointing out data deficient relationships. 
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