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Spatial variation of waterborne Escherichia coli –

implications for routine water quality monitoring

Richard S. Quilliam, Katie Clements, Caroline Duce, Simon B. Cottrill,

Shelagh K. Malham and Davey L. Jones
ABSTRACT
Escherichia coli are often used as faecal indicator bacteria (FIB) to provide a measure of microbial

pollution in recreational and shellfish harvesting waters. However, although model forecasts for

predicting the concentrations of FIB in surface waters are becoming more robust, they suffer from an

inconsistency in quantification methods and an understanding of the spatial variation of FIB within a

water course. The aim of this study was to investigate the transverse spatial variation in E. coli

numbers (as an indicator of faecal pollution) across the estuary of the River Conwy, UK. Water

samples were collected from four transverse transects across the estuary. Spatial variation of E. coli

was significantly different from one side of the river to the other, although was not correlated with

depth or the physiochemical properties of the water. Subsequently, microbial water quality

classifications on the two opposite banks suggested very different levels of pollution coming down

the river. This work has shown that the side of the river that routine water monitoring samples are

taken from can make a significant difference to the classification of microbial water quality. This has

important implications for sampling strategies and the use of microbial source tracking (MST)

techniques.
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INTRODUCTION
Levels of faecal indicator bacteria (FIB), such as Escheri-

chia coli, are often used as a measure of microbial

pollution in recreational and shellfish harvesting waters.

Although E. coli is now considered a poor surrogate for

most pathogenic bacteria, viruses and protozoa (Brookes

et al. ; Savichtcheva & Okabe ), its presence is

still widely accepted as being an important indicator for

faecal contamination. Furthermore, compared with quanti-

fying individual waterborne pathogens (Quilliam et al.

), the measurement of E. coli (either as MPN or

CFU) is relatively straightforward. Epidemiological studies

have established that exposures to FIB in recreational

waters is significantly linked to a decrease in public
health (Wade et al. ; Wiedenmann et al. ), and

maintaining and improving the microbial quality of fresh-

waters has resulted in legislative pressures through

implementation of the Drinking Water (98/83/EC) and

Water Framework (2000/60/EC) Directives (E.C. ,

). As a consequence, model forecasts for predicting

the concentrations of FIB in surface waters are becoming

an increasingly important management decision tool

(Hellweger & Masopust ; Gronewold et al. ).

However, despite two-dimensional models combining

data on the rate of mixing and die-off (Smith & Putz

; Vandenberg et al. ) together with depth and tem-

poral variability (Kashefipour et al. ; Li et al. ;
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Parks & van Briesen ; Pote et al. ), an inconsis-

tency in quantification methods and a lack of

understanding of the spatial variation of FIB within a

water course can hinder the robustness of such models.

Ultimately this could lead to the unnecessary closure of

public beaches or the restricted harvesting of shellfish.

The aim of this study therefore, was to determine the

spatial transverse variation in E. coli numbers across the

estuary of the River Conwy in North Wales, UK. This

area is important for the commercial harvesting of shell-

fish, and has several public beaches with designated EC

bathing waters (Bathing Water Directive, 76/1160/EEC)

(E.C. ). There is a dynamic deposition of sediments

within this estuary that results in heterogeneously dis-

persed banks of mud and sand. This provides

contrasting habitats for coliforms (Howell et al. )

and although progress is being made to incorporate sedi-

ment reservoirs into mathematical models ( Jamieson

et al. ; Badgley et al. ), the spatial re-suspension

of sediment-associated E. coli due to tidal movements

and storm events is still poorly understood. We envisage

that our results will have a significant impact on future

sampling strategies for routine water quality monitoring.

In addition, this work will facilitate further developments

in microbial source tracking (MST) techniques and
Figure 1 | Tranverse transects across the River Conwy. The locations of the four transects an

distance from the west bank. Arrows show direction of river flow. The Revised Bathi

and ‘good’ or ‘sufficient’ quality (500 CFU/100 mL) are marked on graphs a–d as a d

s://iwaponline.com/jwh/article-pdf/9/4/734/396077/734.pdf
contribute to the improvement of hydrodynamic and

water quality models.
MATERIALS AND METHODS

Boat sampling was carried out in the estuary of the River

Conwy during the first week of October, 2010, in an area

that did not contain any large point sources. Four trans-

verse transects were conducted on the same day

(Figure 1), with four replicate water samples collected

from each point in the transect. Samples were taken

approximately 1 m below the surface with sterile 1 L plastic

bottles. Following EU guidelines, all samples were stored

at 4 WC and processed within 6 h of collection. Each

water sample was briefly shaken and 25 mL was vacuum-

filtrated through a 0.2 μm cellulose acetate membrane

(Sartorius Stedim Biotech., Gottingen, Germany). The

membrane was aseptically transferred to the surface of a

plate containing M-endo agar LES (Oxoid Ltd., Basing-

stoke, UK); the plate was inverted and incubated at 37 WC

and enumerated 24 h later. Turbidity was measured with a

T-100 Turbidimeter, and electrical conductivity (EC),

salinity and pH were measured directly using standard

electrodes.
d approximate sampling points are shown on the map and all have been presented as

ng Water Directive (2006/7/EC) classifications of ‘excellent quality’ (250 E. coli CFU/100 mL)

otted and dashed line respectively. Data points represent the mean of 4 replicates± SEM.
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RESULTS AND DISCUSSION

Although there were no significant differences in pH, EC,

turbidity, temperature or salinity across each transect (P>

0.05), there was significant spatial variation in E. coli

numbers in three of the transects (P< 0.001), with approxi-

mately five times more CFU on the east side of the river

compared to the west side (Figure 1(a)–(c)). We believe

that this result has important implications for sampling strat-

egies, for example interpreting the Revised Bathing Water

Directive (2006/7/EC) (E.C. ), which classifies a con-

centration of 250 E. coli CFU/100 mL as ‘excellent quality’

while 500 CFU/100 mL is only classified as ‘good’ or ‘suffi-

cient’ depending upon the percentile evaluation. Although

this stretch of water is not specifically designated as ‘bathing

water’, it does have a direct impact on several public bea-

ches within the catchment, and drains directly into EC

bathing waters and commercial shellfish harvesting areas.

It is clear that the side of the river that water samples are

taken from does make a significant difference to the concen-

tration of indicator bacteria. Classifications on the two

opposite banks suggest very different levels of pollution

coming down the river, which will have important impli-

cations for public health and the management of bathing

waters. Although the water on the west side of the transverse

transects was deeper, this was not significantly correlated

with the concentration of E. coli (P¼ 0.254). Sampling

bias may be introduced however, as the shallower east

side of the river has much easier access for sampling

whilst fulfilling the minimum 1 m depth requirement for

sampling water for microbial monitoring.

Over the last two decades a number of MST methods

have been developed, with the aim of pinpointing exact

sources of microbial pollution (Simpson et al. ). One

of the major limitations associated with MST methods is

the complexity associated with the persistence and survival

of indicator species within the environment, together with

the spatial and temporal heterogeneity within these differ-

ent environmental matrices. Such spatial heterogeneity

can confuse attempts at identifying the cause of microbial

pollution, particularly when water bodies are not well

mixed. Although the physiochemical variables measured

here implied that the water was well mixed across the
om https://iwaponline.com/jwh/article-pdf/9/4/734/396077/734.pdf
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transect, the variation in E. coli numbers suggests that loca-

lised re-suspension from the sediment may significantly

affect spatial concentrations of FIB. Our results have

demonstrated the importance of the sampling location

within a watercourse for routine water quality monitoring

and the effect this can have on interpreting data used for

MST.
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