Relationship between organic precursors and \textit{N}-nitrosodimethylamine (NDMA) formation in tropical water sources

Wang Qi, Lim Fang Yee and Hu Jiangyong

\textbf{ABSTRACT}

The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound \textit{N}-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation $R^2 = 0.898$. Although secondary treatment removed more than 90\% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

\textbf{Key words} | disinfection byproduct, NDMA, NDMAFP, organic characteristics, precursors

\textbf{NOMENCLATURE}

\begin{tabular}{ll}
ASP & Activated sludge process \\
BB & Building block \\
BP & Biopolymers \\
CI & Chemical ionization \\
DBP & Disinfection byproducts \\
DI & De-ionized \\
DMA & Dimethylamine \\
DOC & Dissolved organic carbon \\
DON & Dissolved organic nitrogen \\
GC-MS & Gas chromatography–mass spectrometry \\
HOC & Hydrophobic organic carbon \\
HS & Humic substances \\
LC-MS & Liquid chromatography–mass spectrometry \\
LC-OCD-OND & Liquid chromatography–organic carbon detector–organic nitrogen detector \\
LMW & Low molecular weight \\
MBR & Membrane bioreactor \\
MDL & Method detection limit \\
MSD & Mass spectroscopy detector \\
MW & Molecular weight \\
NDMA & \textit{N}-Nitrosodimethylamine \\
NDMAFP & \textit{N}-Nitrosodimethylamine formation potential \\
NOM & Natural organic matter \\
SEF & Secondary effluents \\
SIM & Selected ion monitoring \\
SPE & Solid phase extraction \\
WRP & Water reclamation plant
\end{tabular}
INTRODUCTION

Since the beginning of the 21st century, N-nitrosodimethylamine (NDMA) has been receiving attention as one of the emerging disinfection byproducts. It is a potent carcinogen with much higher cancer potency than that of trihalomethanes. A value of 0.7 ng/L NDMA in drinking water yields 10^{-6} lifetime cancer risk (United States Environmental Protection Agency (USEPA) 2001). NDMA has been detected in the atmosphere as well as in food and beverage production. It was first documented as a drinking water contaminant in 1998 in California. The drinking water well concerned was closed due to the detection of 150 ng/L NDMA (California Department of Health Services (CDHS) 2003). Other incidents occurred in drinking water production which took recharge from treated wastewater after a reverse osmosis system; NDMA detected exceeded 20 ng/L (Orange County Water District (OCWD) 2000).

A significant level of NDMA can be formed from chlorine disinfection of secondary wastewater effluent and surface water: 100 ng/L and less than 10 ng/L respectively (Najm & Trussell 2001; CDHS 2003). Among the chlorine disinfectants, chloramine forms relatively more NDMA (Mitch et al. 2003). Monochloramine causes NDMA formation one magnitude higher than that of hypochlorite (Mitch & Sedlak 2002). Chlorinated wastewater after advanced treatment, for instance microfiltration, reverse osmosis and UV disinfection, still contains NDMA with concentration ranging from 10 to 100 ng/L (Sedlak & Kavanaugh 2006).

Studies have been conducted to investigate NDMA precursors in source waters. Municipal wastewater contains a higher level of NDMA precursors compared with natural waters (Gerecke & Sedlak 2003). NDMA formation potential (NDMAFP) in secondary wastewater effluents was reported to be between 200 and 1,200 ng/L (Pehlivanoglu-Mantas & Sedlak 2006). A survey on the water resource recovery facilities in the United States showed NDMAFP in wastewater effluent to be between 660 and 2,000 ng/L (Wilczak et al. 2003; Sedlak & Kavanaugh 2006). Nguyen et al. (2011) found total NDMA precursors in ground water ranging from 4–84 ng/L, with a median of 10 ng/L. They also found that NDMA precursors in river water were significantly higher than those in ground water, ranging from 11 to 185 ng/L, with a median of 51 ng/L. In another study, NDMA precursors from Upper San Leandro reservoir (27 ng/L) and Lake Anza (48 ng/L) were found by Mitch et al. (2003). Dimethylamine (DMA) is one of the most frequently studied potential precursors. DMA can come from industrial products such as certain fungicides, pesticides, herbicides, drugs and amine-containing products (Child et al. 1996). Other precursors reported are dithiocarbamate and certain nitrogen-containing cationic polyelectrolytes (Weissmahr & Sedlak 2000).

Studies showed correlation of NDMAFP with organic carbon and organic nitrogen (Gerecke & Sedlak 2003; Farré et al. 2010). Farré et al. (2010) investigated NDMAFP in treated wastewater recycled for potable water production. They found a correlation between NDMAFP and hydrophobic organic carbon (HOC) with $R^2 = 0.95$. Most NDMA precursors (75%) exist in the size fraction of less than 1,000 Da. Pehlivanoglu-Mantas & Sedlak (2008) reported that dissolved organic nitrogen (DON) consisting of hydrophilic, low-molecular weight compounds contained most NDMA precursors, comparing to other fractions of DON. Previous studies revealed the importance of DON on NDMA formation and the positive correlation in natural waters (Lee et al. 2007; Dotson et al. 2007). Xu et al. (2011) also noted a strong correlation ($R^2 = 0.77$) between DON and NDMAFP in river water.

Given the complexity of NDMA precursors and the lack of information on the presence of NDMA and its precursors in tropical water sources, this work aimed to study the properties of NDMA organic precursors in different local water sources and to investigate their relationship with NDMAFP. In this study, the NDMA precursors in wastewater samples were investigated and the results were compared to those in surface water samples. Most studies apply fractionation to characterize natural organic matter (NOM) (Leenheer et al. 2007; Pehlivanoglu-Mantas & Sedlak 2008). It is well known that NDMA precursors are included in the DON pool; however, bulk DON measurement does not enable a clear and significant relationship to be observed between DON and NDMAFP. In this study, one recently developed approach, known as liquid chromatography–organic carbon detector–organic nitrogen
detector (LC-OCD-OND) was applied to separate NOM according to sizes and chemical functions. The quantification result of dissolved organic carbon (DOC) and DON in each fraction further enabled the correlation study between NDMAFP and NOM in each fraction. The results provided new information on the relationship between organic precursor properties and NDMAFP, which can be useful for NDMAFP removal and water quality control.

MATERIALS AND METHODS

Water samples collection

Samples were collected from two water sources with different NOM content: surface water and wastewater. They include the following: (1) lake water, (2) river water and (3) wastewater. Samples were collected from a freshwater lake located in the western region of Singapore that receives runoff from its urban catchment area. Samples were also collected from a river that receives water from tributaries and runoff from road and residential areas. All surface water samples were consistently taken at 0.5 m below the surface. The four types of wastewater selected were secondary effluents (SEF) A, B, C and primary effluent. All wastewater samples were taken consistently at the same locations in the treatment process. The characteristics and precedent treatment process are shown in Table 1. To ensure the consistency of results, all water samples were collected in 1 L amber bottles, and stored in dark at 4 °C after collection until analyzed. All samples were processed within 10 hours of sampling. Two samples of each water type were tested.

NDMA formation potential study

In NDMAFP study, the established method by Mitch et al. (2003) was adopted. All glassware used was washed with decon 90 water, rinsed with de-ionized (DI) water and baked at 400 °C for at least 3 h prior to use. The reactions were conducted at room temperature in 1 L amber glass bottles. Reactions were controlled at pH = 6.8 by a 10 mM phosphate buffer. For each reaction, a 900 mL water sample was dosed with 100 mL 20 mM monochloramine. An excessive dose of monochloramine was used to make sure that the majority of the NDMA precursors were converted into NDMA. At the end of each stage, 200 mM sodium thiosulfate solution was applied to quench the reaction. The formation potential study lasted for 10 days at room temperature. A volume of 900 mL DI water was used as control blank, to measure the possible effects from reagents.

NDMA detection

NDMA was detected by applying solid phase extraction (SPE) followed by analytical instrument: gas chromatography–mass spectrometry (GC-MS) or liquid chromatography–mass spectrometry (LC-MS)
spectrometry (LC-MS). For SPE, EPA Method 521 cartridge was chosen. Chemicals and consumables used include: EPA 521 cartridge, SPE manifold, dichloromethane, methanol, DI water, N₂ gas, NDMA standard solution, NDMA-d₆ standard solution.

A Shimadzu 2010 gas chromatograph equipped with a mass spectroscopy detector (MSD) (Shimadzu Asia-Pacific, Singapore) and chemical ionization (CI) mode was used. Separation of NDMA was performed by a DB-5MS fused silica capillary column (30 m × 0.25 mm I.D. with 0.25 μm film thickness; J&W Scientific, Folsom, USA). The GC oven temperature was held at 35 °C for one minute, ramped at 15 °C/min to 150 °C, then ramped again at 30 °C/min to 250 °C. The MSD acquisition was performed in time scheduled selected ion monitoring (SIM) mode. The samples were injected into the GC-MS with an autosampler (AOC-20s). Splitless injection was carried out and the injection volume was 2 μL. The injector temperature was 200 °C. The ion trap was operated in the CI mode, with isobutane as reagent gas. Analytes were characterized with the SIM mode. Mean recovery was 87 ± 9%, optimal method detection limit (MDL) was 10.0 ng/L (standard deviations, d.o.f. as 6).

A LCMS-8030 triple quadrupole mass spectrometer (Shimadzu, Kyoto, Japan) was also used for NDMA analysis. The mass range was 10–2,000 m/z. A liquid chromatography (LC-50AD) with a Shimadzu SIL-30AC autosampler connected to a triple quadrupole mass spectrometer was used. Analyst software LabSolutions was used for data acquisition and analysis. A C18 capillary column (2.1 × 150 mm I.D., 5 μm) was used for separation. The mobile phases consisted of solvent B (2 mM ammonium acetate) and solvent A (100% methanol).

The mobile phase was prepared by mixing 1.5 g/L Na₂HPO₄ and 2.5 g/L KH₂PO₄. The acidification solution was prepared by mixing 4 mL ortho-phosphoric acid and 0.5 g potassium peroxodisulfate in 1 L of DI water. OCD and ultraviolet detector calibration was established on potassium hydrogen phthalate. OND calibration was established using potassium nitrate (Huber et al. 2011).

Data collection and processing were carried out by customized software (ChromCALC, DOC-LABOR, Germany). The nitrogen content in BP and HS fractions was estimated by the software. For the part in BB and LMW neutrals, manual integration was applied to estimate the nitrogen content in the LMW fraction and the total nitrogen (TN) content. The nitrogen in BB was then calculated by subtracting the nitrogen content in other fractions from the TN content:

\[N \in \text{building block} = \text{total N} - N \in \text{biopolymers} - N \in \text{humic substances} - N \in \text{low molecular weight} \]
Other measurements

Total chlorine was measured using the DPD (N, N-diethyl-p-phenylenediamine) method. A Hach DR5000 spectrophotometer and DPD Total Chlorine Reagent Powder Pillows were used. Total organic carbon (TOC) and TN were measured by TOC and TN analyzer (Shimadzu, Japan).

RESULTS AND DISCUSSION

NOM characteristics in different water samples

Table 1 shows a summary of the NOM composition of the six samples. The fractionation results showed that hydrophobic content, which usually contains both humic acids and fulvic acids, was the main component in lake and river water samples (72.00 and 64.50%). The hydrophilic fraction existed in a lower quantity (28.00 and 35.50%). In most of the cases, the hydrophobic fraction in natural water is higher than the hydrophilic fraction (Fabris et al. 2008). However, the hydrophobicity characteristic of the water samples depends on the characteristics of different water sources. The overwhelmingly dominant fraction of NOM in wastewater was hydrophilic (60.90–67.50%). Previous researchers also noted higher hydrophilic fractions presented in water sources contaminated by wastewater discharges (Mi & Myong 2005). The presence of high hydrophilic fractions is most likely related to the anthropogenic pollutants in wastewater (Lin & Wang 2011).

NDMA formation potential

NDMAFP for river water, lake water, SEF A, B, C and primary effluent are shown in Figure 1.

The different NDMA formation profiles were likely influenced by NOM in various water samples. The same profile of NDMA formation curve was observed in lake and river waters. The excess dosing of chloramines formed NDMA rapidly for the first 2 days. The concentrations of NDMA eventually plateaued due to the consumption of the organic precursors (Mitch et al. 2005). Similarly, the formation kinetics for three types of SEF followed the same trend. The NDMA concentration increased rapidly during the first 2 days of reaction and reached a plateau afterward. However, for the primary effluent, although a rapid increase was observed as well within the first 2 days of reaction, concentration did not plateau after that. Figure 1 shows that for primary effluent there was still a trend of increase after 10 days.

The results for secondary effluent are comparable to similar studies in other countries. In a study in Australia, the NDMA formed from SEF from seven different treatment plants varied from 300 to 1,000 ng/L (Farré et al. 2010). The values for effluents A, B, C in our study were in the range of 300 to 600 ng/L. This corresponded to Australia’s results. In another study (Mitch et al. 2005) in the United States, the NDMA formed from secondary effluent ranged from 660 to 2,000 ng/L. This is larger than both our experimental results and Australia’s results. This higher level of NDMA formed might be due to the different degrees of industrial/commercial contribution. In Sedlak & Kavanaugh’s study (2006), higher levels of NDMA formed were identified in an industrial area.

The types of NOM present in the samples may affect the formation potential pattern. It was found that samples with higher DOC and rich in hydrophilic content exhibited higher NDMAFP. The observation is consistent with the findings from Zhuo & Valentine (2006). This may be related to the higher nitrogen content in the hydrophilic fraction. The presence of secondary and tertiary amines and amine-based precursors (pharmaceuticals and personal care products) are closely related to NDMA formation (Kemper et al. 2010). Dotson et al. (2007) also reported the positive correlation between DON and NDMAFP in natural water. Samples with higher hydrophobic fractions (Lake and River) tended to have lower NDMAFP.

NDMA precursor analysis

Lake and river samples contained least NDMA precursor compared to the wastewater as their NDMAFP were the lowest. This might be due to the low DON content in these water samples (Table 1). A previous study also found DON to be an important precursor of NDMA (Lee et al. 2007). Lake water with higher DON may contain more nitrogen functional group compounds which are reactive in forming NDMA (Sutton & Sposito 2005). Primary effluent contained most NDMA precursor due to it having the highest DON
content. SEF had less NDMA precursor. This is probably due to the removal of DON in secondary treatment. Values of NDMAFP normalized to DOC for all samples were relatively comparable (Figure 2). However, primary effluent had an outstanding NDMAFP/DON value, more than two times that of other water samples. This might be due to the high percentage of DON associated with anthropogenic pollutants in primary effluent. These anthropogenic pollutants have more organic nitrogen precursors to form NDMA (Gereck & Sedak 2003). Among the three SEF, SEF B had much smaller NDMAFP/DON than SEF A and C. This indicates a lower level of NDMA precursors in SEF B, which might be due to its difference organic composition which is discussed in the following sections.

Table 2 shows the DOC distribution in the water samples. The average distribution proportions of the BP in lake and
river water were 3.5% and 6.3% respectively (standard deviations, d.o.f. as 6). The relatively high percentage of HS (37.1 and 27.3%) confirmed the fractionation results which showed lake and river samples were rich in hydrophobic content. Among the wastewater samples, BP percentage in primary effluent was the highest, 16.8%; followed by moderate BP percentage in SEF A and B (6.7 and 9.7%); SEF C had the smallest BP fraction, 1.6%. This drop of BP percentage from the primary effluent to the secondary effluent was probably due to the breakdown of large organic molecules to small organic molecules. Less large organic molecules resulted in less DOC in the BP fraction. The small BP fraction of SEF C was caused by the membrane bioreactor (MBR) process which removed large molecules in the BP fraction. The relatively lower percentage of HS in wastewater (from 12.3 to 20.5%) corresponded with the results that the wastewater samples contained less hydrophobic substance. The results in this study indicated the higher NDMAFP of wastewater samples compared to that of lake and river samples. This is probably due to the higher hydrophilic fraction in wastewater samples. Zhuo & Valentine (2007) also noted that hydrophilic fractions tended to form more NDMA than hydrophobic fractions.

Table 2 shows the distribution of DON in the water samples. Results revealed that DON in the water samples accounted for more than 50% in HS and BB fractions. This indicated that HS and BB were the main components in the water samples.

Results from LC-OCD revealed that HS was the main fraction in surface water: 37.1 and 42.3% of DON in lake to 20.5%) corresponded with the results that the wastewater samples contained less hydrophobic substance. The results in this study indicated the higher NDMAFP of wastewater samples compared to that of lake and river samples. This is probably due to the higher hydrophilic fraction in wastewater samples. Zhuo & Valentine (2007) also noted that hydrophilic fractions tended to form more NDMA than hydrophobic fractions.

Table 2 | DOC percentage in various water samples

<table>
<thead>
<tr>
<th></th>
<th>BP (%)</th>
<th>HS (%)</th>
<th>BB (%)</th>
<th>LMW neutrals (%)</th>
<th>LMW acids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake</td>
<td>3.5</td>
<td>37.1</td>
<td>16.4</td>
<td>13.9</td>
<td>0.1</td>
</tr>
<tr>
<td>River</td>
<td>6.3</td>
<td>27.3</td>
<td>11.1</td>
<td>16.3</td>
<td>n.q.</td>
</tr>
<tr>
<td>Prim Eff</td>
<td>16.8</td>
<td>12.3</td>
<td>11.6</td>
<td>22.3</td>
<td>n.q.</td>
</tr>
<tr>
<td>SEF A</td>
<td>6.7</td>
<td>17.3</td>
<td>17.2</td>
<td>17.2</td>
<td>2.5</td>
</tr>
<tr>
<td>SEF B</td>
<td>9.7</td>
<td>19.3</td>
<td>18.1</td>
<td>18.5</td>
<td>1.9</td>
</tr>
<tr>
<td>SEF C</td>
<td>1.6</td>
<td>20.5</td>
<td>19.1</td>
<td>18.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

n.q. – not quantifiable (<1 ppb calculated). Standard deviations, d.o.f. as 6.

Table 3 | DON percentage in various water samples

<table>
<thead>
<tr>
<th></th>
<th>BP (%)</th>
<th>HS (%)</th>
<th>BB (%)</th>
<th>LMW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake</td>
<td>18.0</td>
<td>37.1</td>
<td>36.3</td>
<td>8.6</td>
</tr>
<tr>
<td>River</td>
<td>13.0</td>
<td>42.3</td>
<td>36.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Prim Eff</td>
<td>17.5</td>
<td>40.1</td>
<td>34.1</td>
<td>8.3</td>
</tr>
<tr>
<td>SEF A</td>
<td>12.9</td>
<td>25.1</td>
<td>49.9</td>
<td>12.1</td>
</tr>
<tr>
<td>SEF B</td>
<td>22.7</td>
<td>29.9</td>
<td>36.4</td>
<td>11.0</td>
</tr>
<tr>
<td>SEF C</td>
<td>2.8</td>
<td>33.7</td>
<td>47.3</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Standard deviations, d.o.f. as 6.
and river samples. This trend was similar to the observation for DOC content. This shows that nitrogen-containing materials from proteins and amino sugars were less significant. The organic nitrogen from the lake and river samples was largely contributed to by HS.

Among the wastewater samples, the primary effluent had the highest DON content in HS fraction and lowest DON content in low molecular weight fraction. SEF C had the lowest DON percentage in BP, indicating that the MBR was effective in removing high molecular-weight compounds.

Results showed SEF A had higher NDMAFP/DON than SEF B (Figure 2). Although SEF A and B had similar LC-OND chromatograms (Figure 3), SEF A had lower DON in BP and higher DON in BB (Table 3). Therefore DON in BB may be more correlated to NDMAFP. SEF C had higher NDMAFP/DON than SEF B. Both effluents came from the same influent wastewater; however, SEF C had lower DON in BP and higher DON in LMW fraction. Therefore, DON in LMW may also be more correlated to NDMAFP. Among the SEF, SEF B had the smallest DON content in BB and LMW (47% compared to 62% and 61% of SEF A and C, respectively). This may be the main reason for the lowest NDMAFP/DON in SEF B. These results correspond with analysis from other studies, where
researchers declared that molecules with MW smaller than 1,000 Da correlated to NDMAFP (Farré et al. 2010). The correlation results will be further discussed in the next section.

Relationship between NDMAFP and organic precursors

Figures 4 and 5 show the relationship between NDMAFP and the organic precursors. A correlation study between NDMAFP and DOC indicated that the relationship was moderate ($R^2 = 0.60$), and the relationship between NDMAFP and DON was more significant ($R^2 = 0.78$). This may be because DOC is the sum of all organic carbon out of which a certain percentage is not NDMA precursors. Moreover, previous studies suggested that significant NDMA precursors are dimethylamine, tertiary or quaternary amines; these are the nitrogen containing compounds. To further investigate, correlation between NDMAFP and fractions of organic precursors was examined (Figure 5). Strong correlations were observed between NDMAFP and DON in BB ($R^2 = 0.79$) and between NDMAFP and DON in LMW ($R^2 = 0.75$). Since the molecular weight of BB is around 300 to 500 g/mol and that of LMW is less than 350 g/mol, the correlation results indicated that significant NDMA precursors came from the organic nitrogen with small molecular weight.

NDMAFP reduction in water reclamation plant (WRP)

Two types of secondary treatment, activated sludge process (ASP) and MBR, in WRP I had NDMA precursor...
removal of 93% and 91%, respectively (standard deviations, d.o.f. as 6) (Figure 6). This corresponds to the reported results that NDMA precursor removal in secondary treatment was between 60 and 90% (Sedlak & Kavanaugh 2006). These high removal rates partially come from the high removal of prevalent NDMA precursor, DMA. It was reported that DMA removal in secondary treatment ranged between 96 and 99%. Studies showed that most of the remaining NDMA precursors in secondary effluent were compounds other than DMA (Mitch & Sedlak 2004; Sedlak & Kavanaugh 2006).

Table 4 indicated higher DON removal in MBR treatment; however, little difference was observed in NDMA precursor removal. This is because MBR treatment achieved more DON removal through removing large molecular weight molecules, which are less likely NDMA precursors. ASP treatment resulted in higher NDMAFP removal due to higher removal efficiency in DON associated with BB and LMW fractions (72% compared with 64% in MBR treatment).

CONCLUSIONS

The experiment results confirmed the same NDMA formation kinetics in both wastewater and natural water; however, the wastewater samples contained more NDMA precursors. NDMAFP was strongly correlated to DON ($R^2 = 0.78$), especially, DON in BB and LMW fractions. Furthermore, correlation study showed that most NDMA precursors came from the DON precursors which had low molecular weight (smaller than 500 g/mol). Secondary treatment was proved to remove a large percentage of NDMA precursors in the wastewater treatment. Future research on NDMA precursor identification and NDMA precursor removal mechanism in wastewater treatment may help improve NDMA precursor removal.

ACKNOWLEDGMENTS

We would like to thank Ms Xiaolan Tan for technical support on instrument operation, and Mr Sit Beng Chiat and Mr Sukiantor Bin Tokiman for help in sample collection.

REFERENCES

![Figure 6](https://example.com/figure6.png) NDMAFP removal by secondary treatment.

Table 4 Comparison of NDMAFP and organics removal of two types of secondary treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NDMAFP removal (%)</th>
<th>DOC removal (%)</th>
<th>DON removal (%)</th>
<th>DON (BB + LMW) removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP</td>
<td>93</td>
<td>88</td>
<td>61</td>
<td>72</td>
</tr>
<tr>
<td>MBR</td>
<td>91</td>
<td>91</td>
<td>76</td>
<td>64</td>
</tr>
</tbody>
</table>

Standard deviations, d.o.f. as 6.

OCWD 2000 Orange County Water District takes a proactive stance on newly regulated compound N-nitrosodimethylamine: OCWD recommends taking two drinking wells out of service. Press release from Orange County Water District.

First received 21 May 2013; accepted in revised form 25 April 2014. Available online 14 July 2014