Podoplanin: A Marker for Reactive Gliosis in Gliomas and Brain Injury

Kushal Kolar, Moises Freitas-Andrade, PhD, John F. Bechberger, MSc, Harini Krishnan, PhD, Gary S. Goldberg, PhD, Christian C. Naus, PhD, and Wun Chey Sin, PhD

Abstract
Reactive astrogliosis is associated with many pathologic processes in the central nervous system, including gliomas. The glycoprotein podoplanin (PDPN) is upregulated in malignant gliomas. Using a syngeneic intracranial glioma mouse model, we show that PDPN is highly expressed in a subset of glial fibrillary acidic protein–positive astrocytes within and adjacent to gliomas. The expression of PDPN in tumor-associated reactive astrocytes was confirmed by its colocalization with the astrocytic marker S100β and with connexin43, a major astrocytic gap junction protein. To determine whether the increase in PDPN is a general feature of gliosis, we used 2 mouse models in which astrogliosis was induced either by a needle injury or ischemia and observed similar upregulation of PDPN in reactive astrocytes in both models. Astrocytic PDPN was also found to be coexpressed with nestin, an intermediate filament marker for neural stem/progenitor cells. Our findings confirm that expression of PDPN is part of the normal host response to brain injury and gliomas, and suggest that it may be a novel cell surface marker for a specific population of reactive astrocytes in the vicinity of gliomas and nonneoplastic brain lesions. The findings also highlight the heterogeneity of glial fibrillary acidic protein–positive astrocytes in reactive gliosis.

Key Words: Astrocyte, Connexin43, GFAP, Glioma, Gliosis, Ischemia, Podoplanin.

INTRODUCTION
Gliomas include the most aggressive forms of adult primary brain tumors (1, 2); they are characterized by high degrees of intratumoral heterogeneity that complicate their treatment (3, 4). The complex composition of glioma environments is also attributable to the presence of nontransformed central nervous system (CNS) resident cells within the tumors that may facilitate tumor progression, thereby affecting patient survival (5–7). Reactive astrocytes expressing increased levels of glial fibrillary acidic protein (GFAP) are found around gliomas (8–11); by the formation of glial scars, they can separate healthy CNS tissues from a variety of focal lesions (12–15).

Podoplanin (PDPN) is a mucin-type transmembrane glycoprotein that has been implicated in various cellular processes, including tumor migration and invasion (16–19), the mechanisms by which PDPN mediates its action are unclear, although it affects the activities of RhoA and ERM (Ezrin, Radixin, Moesin) proteins, which link cell membranes and the cytoskeleton (20). Much more is known about PDPN as a ligand for C-type lectin receptor CLEC-2 in platelet aggregation (21) and its association with the immune system (16).

Enhanced expression of PDPN has been associated with malignant progression of astrocytic tumors (22–24). In addition, PDPN is detected in glioma stem cells (25), which interact extensively with the tumor microenvironment (26). Podoplanin coexpressed with nestin, an embryonic intermediate filament that is re-expressed in reactive astrocytes (27–30). It also colocalized with connexin43 (Cx43), a gap junction protein that is expressed in neural progenitor cells (31, 32) and upregulated in reactive astrocytes induced by various brain injuries, including stab wounds (33–36). Recent evidence suggests that the glial scar contains a distinct population of reactive astrocytes that are derived from neural stem cells (37).

Here, we found that PDPN is highly expressed within some gliomas and in tissues adjacent to gliomas. Its up-regulation in glioma-associated reactive astrocytes was demonstrated using a mouse model consisting of intracranial syngeneic implantation of mouse GL261 glioma cells. We further show that induction of PDPN is not attributable to the presence of glioma cells per se because increased PDPN was also observed in GFAP-positive astrocytes activated by stab wounds and ischemic injury. Our findings suggest that PDPN is a novel cell surface marker for reactive astrocytes with an expression profile that is associated with progenitor cells, raising the possibility that PDPN may have a role in providing a permissive environment for cellular regeneration after brain injury.
MATERIALS AND METHODS

Animals
Male and female mice were maintained in an animal facility with a 12-hour light/dark cycle and provided food and water ad libitum. All breeding and animal procedures were approved by The University of British Columbia Animal Care Committee and performed in accordance with the guidelines established by the Canadian Council on Animal Care.

Cell Line
Mouse GL261 glioma cells (NCI-Frederick Division of Cancer Treatment and Diagnosis, Frederick, MD) were maintained in Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum and transfected with pcDNA-mCherry plasmid with Lipofectamine 2000 (Invitrogen, Carlsbad, CA).

Antibodies
The antibodies used for Western blot and immunofluorescence histochemistry were as follows: rabbit anti-Cx43 (C6219, 1:400 for immunofluorescence histochemistry; Sigma, St Louis, MO); mouse anti–glyceraldehyde 3-phosphate dehydrogenase (5G4 MAb 6C5, 1:5000 for Western blot; HyTest Ltd, Turku, Finland); mouse anti-GFAP (G3893, 1:600 for immunofluorescence histochemistry and 1:2000 for Western blot; Sigma); rabbit anti-IBA1 (1:400 for immunofluorescence histochemistry; Wako, Richmond, VA); mouse anti–nestin (rat-401, 1:85 for immunofluorescence histochemistry; Developmental Studies Hybridoma Bank, Iowa City, IA); hamster anti–PDPN (8.1.1, 1:200 for immunofluorescence histochemistry and 1:5000 for Western blot; Developmental Studies Hybridoma Bank) (38); rabbit anti–PDPN (SC-134483, 1:50 for immunofluorescence histochemistry; Santa Cruz Biotechnology, Santa Cruz, CA); rabbit anti–S100β (ab868, 1:200 for immunofluorescence histochemistry; Abcam, Cambridge, MA); and anti–RFP/mCherry (A00682, 1:750 for Western blot; Genscript, Piscataway, NJ).

Intracranial Implantation of Glioma Cells
Mice were anesthetized with isoflurane and a 1.0-mm-diameter hole was drilled through the skull. GL261 cells (2.5 × 10⁶) were resuspended in 2 μL of Hanks balanced salt solution and injected intracerebrally with a 33-gauge syringe into the striatum of adult C57BL/6 mice at a position 2.5 mm ventral to the dura. At 7 or 14 days after injection, mice were killed and brains were fixed by transcardial perfusion with 4% paraformaldehyde in 0.1 mol/L of phosphate-buffered saline (PBS) before being removed and processed with an electronic coagulator (Codman & Shurtleff, West Chester, PA). Mice were killed 4 or 6 days later for subsequent analysis.

Immunohistochemistry
Human brain tumor tissue microarray slides (GL208, GL2082, and GL2083; US Biomax, Rockville, MD) were probed with anti-PDPN antibody (D2-40, 1:100; BioLegend, San Diego, CA) and incubated sequentially with primary antibodies in 1% bovine serum albumin and 0.3% Triton X-100 in PBS and incubated with Alexa Fluor secondary antibodies in 1% bovine serum albumin and 0.3% Triton X-100 at room temperature for 1 hour. Sections were mounted with Prolong Gold (Invitrogen) and imaged with a Leica TCS SP5 II Basic VIS system.

Immunofluorescence and Image Analysis
Sucrose-equilibrated brains were frozen in OCT compound (Tissue-Tek/Sakura, Torrance, CA) and sectioned at 10 μm thickness. Brain sections were blocked with 2% bovine serum albumin and 0.3% Triton X-100 in PBS and incubated sequentially with primary antibodies in 1% bovine serum albumin and 0.3% Triton X-100 at 4°C overnight and with corresponding Alexa Fluor secondary antibodies in 1% bovine serum albumin and 0.3% Triton X-100 at room temperature for 1 hour. Sections were mounted with Prolong Gold (Invitrogen) and imaged with a Leica TCS SP5 II Basic VIS system.

To quantify the extent of PDPN and GFAP staining from the tumor border or needle tract, we delineated the tumor border in ImageJ with reference to mCherry fluorescence or visually identified the needle tract. Images were adjusted by thresholding, and 20 to 30 measurements were performed around the tumor (from the delineated border or needle tract to the last point along each radius, where the proteins could be detected) as previously described (33). At least 3 animals were analyzed under each experimental condition.

Protein Extraction and Western Blot Analysis
Tumor samples were obtained by microdissection of fresh brain tissue from mice containing implanted GL261 cells. Tissue surrounding the stab wound and cortical tissues from mice subjected to middle cerebral artery occlusion (MCAO) were isolated from fresh frozen brain sections with a 25-gauge needle under a dissection microscope. Tissue samples were lysed in RIPA buffer containing 0.1% sodium dodecyl sulfate, 1% IGEPAL, 0.5% sarkosyl, 50 mmol/L of Tris-HCl (pH 8.0), and 150 mmol/L of NaCl supplemented with protease inhibitors (Roche Applied Science, Indianapolis, IN) and phosphatase inhibitors (Sigma). Protein concentrations were determined with a bicinchoninic acid assay kit before the separation of the protein lysate on a sodium dodecyl sulfate–polyacrylamide gel electrophoresis gel. After incubation of membranes with primary antibodies at 4°C overnight, they were rinsed and incubated with horseradish peroxidase–conjugated secondary antibodies (Sigma). Protein bands were detected with Amersham ECL Western detection reagents (GE Healthcare).

Statistical Analysis
To evaluate significance between 2 groups, we performed comparisons using Student t-test. p < 0.05 was considered significant. Data are presented as mean ± SE.
RESULTS

PDPN Is Expressed in Glioma-Associated Reactive Astrocytes

The presence of reactive astrocytes in brain lesions is usually confirmed by their enhanced GFAP immunoreactivity (8,14); a recent report has highlighted the possibility of stratifying Grade IV gliomas based on the expression of intermediate filament proteins (41). Expression of PDPN is significantly higher in malignant gliomas (22–24), and we similarly observed PDPN upregulation in Grade III and Grade IV glioma tissues when we probed a tissue tumor array for PDPN expression (Figure, Supplemental Digital Content 1, http://links.lww.com/NEN/A684). Interestingly, we observed PDPN staining in cell types resembling GFAP-positive astrocytes that were most obvious in Grade I and Grade II glioma tissues (Fig. 1A). Because PDPN expression has been detected in astrocytes (42–44), our results suggest

![Figure 1](https://academic.oup.com/jnen/article-abstract/74/1/64/2614235)
that some of the PDPN immunoreactivity in glioma tissues may be attributed to reactive astrocytes. To confirm that PDPN is expressed in nonneoplastic glial cells, we used a mouse glioma cell line, GL261, that expresses minimal levels of endogenous PDPN and GFAP in vitro (Fig. 1B) in an intracranial animal model. We implanted mCherry-labeled GL261 cells into the striatum of syngeneic C57B/6 mice with an intact immune system (45, 46) and observed the expression of PDPN protein specifically in cells that did not express the fluorescent marker for transplanted

FIGURE 2. Upregulation of PDPN in reactive astrocytes at the glioma periphery. (A) Coexpression of PDPN and GFAP-positive reactive astrocytes at the tumor periphery. A glial scar formed around the implanted tumor at 2 weeks after intracranial implantation of GL261 cells. mCherry-expressing glioma cells were pseudocolored in blue. Glial fibrillary acidic protein immunofluorescence marks the region of gliosis. (B) Membrane-bound PDPN (green) surrounding S100β (red) at the tumor border. S100β is a cytosolic marker for astrocytes. Right panel shows the magnified image of white boxes α and β. (C) Western blot showing PDPN and GFAP expression in different mouse brain tissue samples obtained by microdissection. There is a noticeable increase in PDPN and GFAP protein levels in the tumor border sample compared to the core. Podoplanin is upregulated to a greater extent than GFAP. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control.
neoplastic cells (Fig. 1C). Using anti-GFAP antibody at a concentration that only detects reactive astrocytes (47, 48), we observed coexpression of GFAP and PDPN (Fig. 1C). This result was further supported by examination of PDPN expression in the glial scar, which was visualized as a region of enhanced GFAP expression caused by hypertrophy of astrocytes (14) at the glioma periphery (Fig. 2A). By costaining PDPN-labeled cells with anti-S100β (49), which is a cytoplasmic marker for astrocytes, we showed that PDPN is expressed in astrocytic glial cells; membrane-bound PDPN immunoreactivity surrounded cytoplasmic S100β in the same cells (Fig. 2B). Upregulation of PDPN protein at the tumor periphery was confirmed by Western blot analysis (Fig. 2C).

Consistent with immunofluorescence data, high PDPN expression was detected at the tumor border, and not in the tumor core, by Western blot (Fig. 2C). Upregulation of PDPN was greater than the corresponding upregulation of GFAP at the tumor border compared to the tumor core (Fig. 2C). In contrast, PDPN was not detected in IBA1-positive microglia, another major cell type found in the glioma microenvironment (Figure, Supplemental Digital Content 2, http://links.lww.com/NEN/A685) (5, 50).

Upregulation of astrocytic Cx43 has been detected in gliomas, particularly in the peritumoral region (51–53). Similar to PDPN, increased Cx43 immunoreactivity was observed in the brain parenchyma within 100 μm of the edge of the GL261 tumor mass (Fig. 3A). In addition, Western blot

FIGURE 3. Colocalization of PDPN and Cx43 in tumor-associated reactive astrocytes. (A) Expression of Cx43 (green) and GFAP-positive reactive astrocytes (red) at the glioma periphery confirmed by co-immunostaining coronal brain sections with anti-Cx43 and anti-GFAP antibodies (white arrowheads). GL261 glioma cells were pseudocolored in blue. Bottom panel shows the magnified image of white boxes in the upper panel. (B) Western blot analysis with lysate from microdissected brain tissues. Co-upregulation of Cx43 and GFAP proteins at the tumor border compared to the core. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control. (C) Colocalization of PDPN and Cx43 in reactive astrocytes at the tumor border.
analysis of proteins isolated from microdissected tissue showed coexpression of Cx43 and GFAP at the glioma periphery, which is identified by its minimal mCherry level compared to the tumor core (Fig. 3B). Therefore, colocalization of Cx43 with PDPN (Fig. 3C) indicates that these proteins are expressed simultaneously in tumor-associated astrocytes adjacent to the mCherry-labeled GL261 glioma periphery.

PDPN Is Expressed in a Subset of Reactive Astrocytes Closest to the Tumor Periphery

Glia fibrillary acidic protein immunoreactivity has been widely used to assess the extent of gliosis under various pathologic conditions in the CNS (8, 14). We noticed that not all GFAP-expressing astrocytes were PDPN-positive in gliomas (Fig. 1A) and adjacent to implanted gliomas (Fig. 4A). Although the intensity of GFAP immunoreactivity reduced gradually until it was undetectable (429.9 ± 14.5 μm from the tumor border), PDPN staining diminished sharply (96.1 ± 4.2 μm from the tumor periphery) (Fig. 4B). These observations suggest the selective upregulation of PDPN in a subset of reactive astrocytes, indicating that a heterogeneous population of astrocytes comprises peritumoral tissue.

Upregulation of PDPN in Reactive Astrocytes Induced by Mechanical and Ischemic Injuries

To determine whether gliosis-induced PDPN upregulation is a host response independent of glioma cells, we first examined the expression of PDPN in astrocytes activated by a stab wound. The extent of astrogliosis, as visualized by enhanced GFAP and Cx43 immunoreactivity, peaked at 6 days postinjury (33). Using a stab wound injury model that we have previously established (33), we observed a significant increase in PDPN staining within a distance of 100 μm from the stab wound (Fig. 5A). In contrast, GFAP-positive astrocytes were more dispersed and detected at a considerably farther distance from the stab wound (Fig. 5A). Upregulation of PDPN within the region surrounding the stab wound, compared to the same region in the contralateral hemisphere, was confirmed by Western blot analysis of microdissected mouse brain tissues (Fig. 5B). Similar to our observation in gliosis induced by glioma, coexpression of PDPN and GFAP was also detected in gliosis induced by a mechanical stab wound (Figure, Supplemental Digital Content 3, A, B, http://links.lww.com/NEN/A686).

We next investigated whether there is a similar increase in PDPN levels in reactive astrocytes induced by MCAO. In agreement with previous studies (39, 54), there was a significant increase in GFAP immunoreactivity in the peri-infarct region surrounding dead tissue at 4 days postinjury (Fig. 6A). In contrast, GFAP-positive astrocytes were more dispersed and detected at a considerably farther distance from the stab wound (Fig. 5A). Upregulation of PDPN within the region surrounding the stab wound, compared to the same region in the contralateral hemisphere, was confirmed by Western blot analysis of microdissected brain tissues (Figure, Supplemental Digital Content 4, http://links.lww.com/NEN/A687).

Expression of PDPN in Nestin-Positive Reactive Astrocytes

Connexin43 colocalizes with nestin, which is re-expressed in reactive astrocytes (29,57–59). Using double immunofluorescence staining, we observed that PDPN colocalized with nestin in some reactive astrocytes (Fig. 7).

DISCUSSION

Astrocytes become "reactive" in response to neuronal death (12). At the molecular level, a specific set of proteins is upregulated in these astrocytes, although the significance of their increased expression remains unclear (42–44). In this...
regard, GFAP is the most widely used marker for reactive astrocytes (48, 60, 61), and its absence seems to attenuate astrogliosis (62). A genomic analysis reveals that astrocytes in reactive gliosis are highly heterogeneous and that distinct subsets of proteins are altered in response to specific injuries (63). Here, we demonstrate for the first time that PDPN expression is increased in astrocytes activated by glioma growth, mechanical stab wound, and brain ischemia.

Reactive astrogliosis serves to protect neurons from further damage, although it also inhibits their regeneration (13). Recent evidence reveals that the glial scar formed after spinal cord injury contains a distinct neural stem cell progeny adjacent to the lesion, and these cells exert a neuroprotective effect (64, 65). Moreover, cerebral infarction induces a subset of astrocytes with stem cell–like characteristics and the ability to form neurons (66, 67). We found that PDPN is upregulated in a subset of GFAP-positive reactive astrocytes that are proximal to a cerebral infarct. Podoplanin has been detected in neural stem cells (25, 68, 69); its colocalization with Cx43, which is also expressed in neural stem cells (32, 70, 71), suggests that PDPN is a novel marker for detecting a specific subpopulation of reactive astrocytes. Furthermore, the coexpression of PDPN with nestin suggests that PDPN is expressed in reactive astrocytes with proliferative potential (29, 65, 72–74); therefore, the temporal expression of PDPN in ischemic brain suggests that it may play a role in recovery after the initial cellular insult.

Astrogliosis is a prominent feature of gliomas (10, 11, 75), and it is often difficult to distinguish glioma cells from reactive astrocytes with stem cell–like characteristics and the ability to form neurons (66, 67). We found that PDPN is upregulated in a subset of GFAP-positive reactive astrocytes that are proximal to a cerebral infarct. Podoplanin has been detected in neural stem cells (25, 68, 69); its colocalization with Cx43, which is also expressed in neural stem cells (32, 70, 71), suggests that PDPN is a novel marker for detecting a specific subpopulation of reactive astrocytes. Furthermore, the coexpression of PDPN with nestin suggests that PDPN is expressed in reactive astrocytes with proliferative potential (29, 65, 72–74); therefore, the temporal expression of PDPN in ischemic brain suggests that it may play a role in recovery after the initial cellular insult.

Astrogliosis is a prominent feature of gliomas (10, 11, 75), and it is often difficult to distinguish glioma cells from reactive astrocytes with stem cell–like characteristics and the ability to form neurons (66, 67). We found that PDPN is upregulated in a subset of GFAP-positive reactive astrocytes that are proximal to a cerebral infarct. Podoplanin has been detected in neural stem cells (25, 68, 69); its colocalization with Cx43, which is also expressed in neural stem cells (32, 70, 71), suggests that PDPN is a novel marker for detecting a specific subpopulation of reactive astrocytes. Furthermore, the coexpression of PDPN with nestin suggests that PDPN is expressed in reactive astrocytes with proliferative potential (29, 65, 72–74); therefore, the temporal expression of PDPN in ischemic brain suggests that it may play a role in recovery after the initial cellular insult.

Astrogliosis is a prominent feature of gliomas (10, 11, 75), and it is often difficult to distinguish glioma cells from reactive astrocytes with stem cell–like characteristics and the ability to form neurons (66, 67). We found that PDPN is upregulated in a subset of GFAP-positive reactive astrocytes that are proximal to a cerebral infarct. Podoplanin has been detected in neural stem cells (25, 68, 69); its colocalization with Cx43, which is also expressed in neural stem cells (32, 70, 71), suggests that PDPN is a novel marker for detecting a specific subpopulation of reactive astrocytes. Furthermore, the coexpression of PDPN with nestin suggests that PDPN is expressed in reactive astrocytes with proliferative potential (29, 65, 72–74); therefore, the temporal expression of PDPN in ischemic brain suggests that it may play a role in recovery after the initial cellular insult.
astrocytes (75). An increase in PDPN expression has been reported in malignant gliomas (22–24), and our study suggests that a significant proportion of PDPN detected in gliomas may be attributed to tumor-associated reactive astrocytes. Therefore, our findings may explain why PDPN is not a useful diagnostic marker for grading glioma malignancy (24). The selective upregulation of PDPN and Cx43 in reactive astrocytes adjacent to glioma cells at the tumor-host interface implicates a role for

FIGURE 6. Increased PDPN expression in reactive astrocytes adjacent to ischemic infarcts. (A) Images of coronal brain sections showing enhanced GFAP staining surrounding the infarct region (white dotted line), with minimal GFAP immunoreactivity within the infarct core (*) after MCAO-induced ischemic infarct at 4 and 6 days postinjury. Podoplanin expression (green) is increased in the peri-infarct region at 6 days postinjury (white arrows). (B) Colocalization of PDPN (green) with the astrocyte marker S100β (red) in the peri-infarct region at 6 days postinjury.
PDPN in microenvironment signaling at the invasive niche. In addition, some evidence suggests that progenitor cells have a major role in glioma progression and in the resistance of tumors to anticancer therapies (76, 77). Indeed, expression of PDPN in cancer-associated fibroblasts has been shown to enhance tumor progression in peripheral cancers (78–80). Podoplanin has become a promising target for chemotherapy for a variety of cancers, including gliomas (81–84). Accordingly, anti-PDPN antibody has been investigated for its feasibility to target malignant gliomas (83). Taken together, our findings highlight an unexplored role for PDPN in reactive gliosis, which is prominent in the glioma microenvironment and in brain injury.

ACKNOWLEDGMENTS

We thank Maxence Le Vasseur for providing technical assistance.

REFERENCES

© 2014 American Association of Neuropathologists, Inc.
27. Krum JM, Rosenstein JM. Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in murine reactive astroglia following neural grafting or brain wounds. Exp Neurol 1999;160:348–60
32. Bittman KS, LoTurco JJ. Differential regulation of connexin 26 and 43 in proline neuron, neural precursors, as well as glioma cells. APMIS 2013;7:539:188–95
40. Cerutti SM, Chadi G. S100 immunoreactivity is increased in reactive astrocytes following focal cerebral ischemia. J Neurooncol 2006;80:227–33
47. Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: Leukocyte recruitment via the chorioid plexus. EMBO J 2014;33:7–22
55. Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: Leukocyte recruitment via the choroid plexus. EMBO J 2014;33:7–22
60. Eng LF, Ghimri RS. GFAP and astroglia. Brain Pathol 1994;4: 229–37