Comparison of two standard techniques of general anaesthesia for day-case cataract surgery

A. Moffat and P. M. Cullen

Summary
We have assessed general anaesthesia for day-case cataract surgery in 40 patients more than 60 yr of age. The patients were allocated randomly to receive either an infusion of propofol or etomidate–vecuronium–isoflurane anaesthesia. Patients in the propofol group experienced significant reductions in mean arterial pressure (42%) during anaesthesia. In the etomidate–vecuronium–isoflurane group there was a significant increase in both mean arterial pressure (19%) and heart rate (21%) with intubation. During maintenance of anaesthesia in this group, mean arterial pressure and heart rate decreased to 88% and 80% of awake values. Both techniques produced similar reductions in intra-ocular pressure. Recovery times from cessation of anaesthesia to spontaneous eye opening and ability to give correct date of birth were significantly shorter in the etomidate-isoflurane group. Two hours after surgery there were no significant differences between the groups and cognitive mental function tests were similar to preoperative values. All patients were deemed fit for discharge home 2 h after surgery. We conclude that it is feasible to provide general anaesthesia for day-case cataract surgery. Etomidate-vecuronium-isoflurane anaesthesia appeared to be superior to propofol in this age group as it was associated with less hypotension and a more rapid recovery. (Br. J. Anaesth. 1995; 74: 145–148)

Key words

In the USA more than 80% of cataract surgery is performed on a day-case basis under local anaesthesia; the impetus has come from the insurance companies because it is cheaper than inpatient surgery [1].

In the UK the majority of cataract operations are performed under general anaesthesia on an inpatient basis [2]. The main disadvantages of this practice are longer waiting lists and increased costs. It is estimated that between 20% and 40% of cataract patients in the UK are acceptable for day-case surgery [3]. While local anaesthesia is suitable for this type of operation, patients or surgeons may still request general anaesthesia. These attitudes are unlikely to change in the short term, therefore the use of day-case cataract surgery would increase if safe general anaesthesia was readily available.

The ideal general anaesthetic technique for day surgery should provide safe and adequate operating conditions with minimal complications, particularly nausea and vomiting, and swift recovery of psychomotor function. Propofol has become the drug of choice in many day-case units because of its smooth and rapid recovery characteristics and low incidence of nausea and vomiting [4].

The aim of this study was to determine the feasibility of general anaesthesia for day-case cataract surgery using either an infusion of propofol or etomidate–vecuronium–isoflurane anaesthesia.

Patients and methods
The study was approved by the hospital Ethics Committee and informed consent was obtained from 40 patients, ASA I–III, aged more than 60 yr, undergoing cataract extraction and lens implantation under general anaesthesia (table 1). Two weeks before surgery patients attended a preoperative assessment clinic where routine blood tests, ECG, chest x-ray and a medical examination were performed. Each patient also received a detailed medical questionnaire to be completed and submitted on the day of hospital admission.

Patients arrived in hospital the afternoon before surgery and were assessed by the anaesthetist with regard to fitness and willingness to take part in the study. Cognitive mental function was assessed using the mini-mental state test (MMS) [5]. MMS is a valuable and reliable screening test of cognitive function. It concentrates on the cognitive aspect of mental function and excludes questions concerning mood, abnormal mental experience, and the form of thinking.

Premedication comprised metoclopramide 10 mg 1 h before operation. Sedative drugs were avoided. On arrival in the induction room patients were allocated randomly to receive either infusion an-
aesthesia with propofol (group 1) or etomidate-
vecturonium-isoflurane anaesthesia (group 2). Before
induction, topical anaesthesia (1 % amethocaine) was
applied to the non-operative eye and intraocular
pressure (IOP) measured using a Perkins tonometer.
Routine monitoring equipment was then attached
which included ECG, non-invasive automatic ar-
terial pressure monitor and pulse oximeter. An i.v.
cannula was inserted under local anaesthesia. In
group 1, anaesthesia was induced and maintained
with propofol using a computer-controlled infusion
device. A mathematical model which describes the
pharmacokinetic behaviour of propofol in adults was
incorporated into the computerized infusion system
[6]. The system allowed the operator to select and
maintain a target blood concentration of propofol.
We chose an initial target plasma concentration of
6 ug ml$^{-1}$ reducing to 4 ug ml$^{-1}$ after 10 min. A
laryngeal mask was inserted and the patients allowed
to breathe spontaneously a mixture of 70 % nitrous
oxide in oxygen throughout the procedure.
In group 2 anaesthesia was induced with etomidate
0.25 mg kg$^{-1}$, and vecuronium 0.075 mg kg$^{-1}$
was used to facilitate intubation. The lungs were
ventilated with 70 % nitrous oxide in oxygen supple-
mented with 0.5-1 % isoflurane to maintain an-
aesthesia.
End-tidal carbon dioxide was monitored in both
groups using a Datex Multinex 4000 and maintained
at approximately 5 kPa in group 2. In the spon-
taneously breathing patients, end-tidal carbon di-
oxide was maintained at 6-8 kPa. Oxygen saturation,
ECG and non-invasive arterial pressure were re-
corded throughout the procedure. IOP was measured
again in both groups after induction of anaesthesia.
A period of 5 min was allowed to elapse between
insertion of the laryngeal mask or intubation and
measurement of IOP. Topical anaesthesia with 1 %
amethocaine was applied to the operative eye before
surgical incision. General anaesthesia was main-
tained in both groups until after IOP had been
measured in the non-operative eye at the end of
surgery.
Recovery times were recorded from discontinu-
lation of anaesthesia to the time when spontaneous
eye opening occurred and patients were able to give
their correct date of birth. Two hours after surgery
patients were assessed for nausea and vomiting,
ability to converse normally, walk unaided and retain
oral fluids. Cognitive mental function tests (MMS
state test) were repeated and the score compared
with the preoperative value.
The results were analysed using a paired Student's t
for parametric data and multiple analysis
of variance of non-parametric data. $P < 0.05$ was
considered significant.

Results
The two groups were comparable in age, weight and
height (table 1). The changes in heart rate and
arterial pressure recorded during the procedure are
shown in figures 1 and 2. There were significant
group differences in both of these variables after
induction of anaesthesia, intubation/laryngeal mask
insertion and maintenance of anaesthesia. Patients in
the propofol group experienced greater decreases in
mean arterial pressure during induction and main-
tenance of anaesthesia ($P < 0.01$) while patients in
the etomidate group showed a significant increase in
arterial pressure and heart rate at intubation ($P <
0.01$). Propofol was associated with lower mean
arterial pressure throughout the procedure ($P <
0.01$). There were no significant differences in IOP
between the groups despite strict control of end-tidal
carbon dioxide in the etomidate-isoflurane group

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Group 1 (propofol)</th>
<th>Group 2 (etomidate–isoflurane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>(n = 20)</td>
<td>(n = 20)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>72 (60-86)</td>
<td>77 (64-88)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>67 (47-94)</td>
<td>65 (50-83)</td>
</tr>
</tbody>
</table>

Figure 1 Mean arterial blood pressure (MAP) during propofol (●) and etomidate–isoflurane (○) anaesthesia (mean, SD). Ind = Induction, Int/LMA = intubation and insertion of the laryngeal mask airway (LMA). **$P < 0.01$.

Figure 2 Heart rate (HR) during propofol (●) and etomidate–isoflurane (○) anaesthesia (mean, SD). Ind = Induction, Int/LMA = intubation and insertion of the laryngeal mask airway (LMA). **$P < 0.01$.

Downloaded from https://academic.oup.com/bja/article-abstract/74/2/145/452305 by guest on 31 January 2019
rate. There was however a significant haemodynamic minimal effects on mean arterial pressure or heart rate and vecuronium 0.075 mg kg⁻¹ led to a faster throughput of patients and halved the expenditure on staff [22]. The current practice in

Propofol reduces myocardial oxygen requirements without producing ischaemia [12, 13]. This may be explained in part by the fact that although propofol decreases cardiac output and arterial pressure, it also reduces oxygen demands. In our study may be attributable in part to the use of the antiemetic metoclopramide before, and omission of narcotic analgesics during and after operation.

Recovery times were significantly shorter in the etomidate-isoflurane group (table 3). This may reflect increased depth of anaesthesia in the propofol group to avoid the risk of coughing as this group was allowed to breathe spontaneously using a laryngeal mask. Investigators have compared immediate recovery after propofol, thiopentone and methohexitone when used to induce and maintain anaesthesia of short duration using an incremental dose technique. In each comparative study propofol was associated with more rapid emergence from anaesthesia [19, 20]. Recovery has also been assessed in studies comparing continuous infusion of propofol with inhalation anaesthesia. Recovery after propofol was faster only if the inhalation agent was preceded by thiopentone induction [21].

All patients were able to converse normally, walk unaided and retain oral fluids 2 h after surgery. MMS scores were similar to preoperative values in both groups (table 3). This is in contrast with the findings of other investigators who demonstrated significant impairment of cognitive mental function after operation in patients who received i.v. sedation for cataract extraction under local anaesthesia [5]. The avoidance of sedative premedicant drugs and the use of shorter-acting anaesthetic agents may explain the lack of effect on cognitive mental function in the present study.

A recent study of cataract surgery comparing general anaesthesia with local anaesthesia found that local anaesthesia was 15 times cheaper in material, led to a faster throughput of patients and halved the expenditure on staff [22]. The current practice in
most day-case units is that the ophthalmologist gives local anaesthesia. However, a joint working party from the College of Ophthalmologists and the College of Anaesthetists recommended that an anaesthetist should be present during local anaesthesia for intraocular surgery [23]. If these recommendations are implemented the cost benefits of local anaesthesia over general anaesthesia for day-case cataract surgery will be considerably reduced.

In conclusion, with proper preoperative assessment and avoidance of long-acting sedative drugs and narcotic analgesics, day-case general anaesthesia for cataract surgery is feasible, safe and potentially cost effective. Both anaesthetic techniques provided good operating conditions and rapid smooth recovery. Etomidate–vecuronium–isoflurane anaesthesia would appear to be superior to propofol in this age group as it produced less hypotension and more rapid recovery.

Acknowledgements
The assistance of Dr Gordon Dutton, Consultant Ophthalmologist, is gratefully acknowledged.

References