Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant

M.A. McGinley and C.M. McGinley
St Croix Sensory, Inc., P.O. Box 313, 3549 Lake Elmo Ave. N., Lake Elmo, MN, 55042, USA
(E-mail: mike@fivesenses.com)

Abstract A standard method for measuring and quantifying odour in the ambient air utilizes a portable odour detecting and measuring device known as a field olfactometer (US Public Health Service Project Grant A-58-541). The field olfactometer dynamically dilutes the ambient air with carbon-filtered air in distinct ratios known as "Dilutions-to-Threshold" dilution factors (D/Ts), i.e. 2, 4, 7, 15, etc. Thirteen US states and several cities in North America currently utilize field olfactometry as a key component of determining compliance to odour regulations and ordinances. A controlled environmental chamber was utilized, with hydrogen sulfide as the known test odorant. A hydrogen sulfide environment was created in this controlled chamber using an Advanced Calibration Designs, Inc. Cal2000 Hydrogen Sulfide Generator. The hydrogen sulfide concentration inside the chamber was monitored using an Arizona Instruments, Inc. Jerome Model 631 H2S Analyzer. When the environmental chamber reached a desired test concentration, test operators entered the chamber. The dilution-to-threshold odour concentration was measured using a Nasal Ranger Field Olfactometer (St Croix Sensory, Inc.) and a Barnebey Sutcliffe Corp. Scentometer. The actual hydrogen sulfide concentration was also measured at the location in the room where the operators were standing while using the two types of field olfactometers. This paper presents a correlation between dilution-to-threshold values (D/T) and hydrogen sulfide ambient concentration. For example, a D/T of 7 corresponds to ambient H2S concentrations of 5.7–15.6 µg/m3 (4–11 ppbv). During this study, no significant difference was found between results obtained using the Scentometer or the Nasal Ranger® (r = 0.82). Also, no significant difference was found between results of multiple Nasal Ranger® users (p = 0.309). The field olfactometers yielded hydrogen sulfide thresholds of 0.7–3.0 µg/m3 (0.5–2.0 ppbv). Laboratory olfactometry yielded comparable thresholds of 0.64–1.3 µg/m3 (0.45–0.9 ppbv). These thresholds are consistent with published values.

Keywords Ambient odour measurement; detection threshold; dilution-to-threshold; field olfactometer; odour concentration; olfactometer

Introduction
Community odours remain at the top of air pollution complaints to regulators and government bodies internationally. Ambient air holds a mixture of odorous chemicals from everyday activities of industrial and commercial enterprises. When air quality is compromised with odours, effective study, investigation, and enforcement requires that odours be measured using standardized methods that are dependable, reproducible, objective, and quantitative.

Field olfactometry can be used as a proactive monitoring or enforcement tool for odour measurement at property lines and in the neighboring community. The quantification of ambient odours is typically needed for the following purposes:
1. Monitoring daily operations (management performance evaluations);
2. Comparison of operating practices (evaluating alternatives);
3. Documenting specific events or episodes (defensible, credible evidence);
4. Monitoring compliance (i.e. compliance assurance permits);
5. Determination of compliance (i.e. permit renewal);
6. Determination of facility status (i.e. baseline data for expansion planning);
7. Investigation of odour control effectiveness (i.e. scientific testing);
8. Verification of odour dispersion modeling (i.e. model calibration);
9. Determination of specific odour sources (i.e. investigation of complaints);
10. Verification of complaints (i.e. notice of violation).

Field olfactometry has the following key advantages over laboratory olfactometry for measurement of ambient odours: (1) lower method detection limit (most laboratory olfactometers have a method detection limit of 5–10 dilutions), (2) immediate results (laboratory results can take 1–5 days to receive a report), (3) eliminates concern about deterioration of odour in the sample bag, and (4) low per-sample cost.

This study focused on the use of field olfactometers. A series of hydrogen sulfide concentrations were tested in an environmental chamber. Data will be presented which will compare the results obtained using two commercially available field olfactometers. Data will also show correlation between hydrogen sulfide concentration and the dilution-to-threshold values obtained by the field olfactometer tests.

Field olfactometry

A field olfactometer dynamically dilutes the ambient air with carbon-filtered air in discrete “dilution ratios.” The US Public Health Service method defined the dilution ratio (dilution factor) as “dilution-to-threshold,” D/T. The dilution-to-threshold is a measure of the number of dilutions needed to dilute the odour to the threshold. The method for calculating the “dilution-to-threshold” (D/T) is:

\[
D/T = \frac{\text{Volumetric flow of carbon-filtered air}}{\text{Volumetric flow of odorous air}}
\]

Figure 1 shows a block diagram of a field olfactometer, illustrating the flow of ambient air, carbon-filtered air, and the diluted odour mixture.

Scentometer

The Barnebey Sutcliffe Corporation Scentometer is a rectangular, clear plastic box (15.25 cm × 12.7 cm × 6.2 cm), containing two activated carbon beds. The box contains two ½" diameter air inlets to the activated carbon beds (one on top and one on the bottom of the box). There are six odorous air inlet holes on one end of the box for six different D/T values (2, 7, 15, 31, 170, and 350). The opposite end of the box contains two glass nostril tubes for sniffing.

Nasal ranger field olfactometer

The St Croix Sensory Nasal Ranger Field Olfactometer operates based on the same principles as the original Scentometer. Carbon-filtered air is supplied through two replaceable carbon cartridges. An orifice selector dial on the Nasal Ranger® contains six odorous air inlet orifices for six different D/T values (2, 4, 7, 15, 30, and 60). The dial contains six “blank” positions (100% carbon-filtered air) alternating with the D/T orifices. The dial is replaceable for other D/T series (e.g. 60, 100, 200, 300, 400, 500).

The diluted odorous air is sniffed through an ergonomically designed nasal mask, which is constructed of a carbon fiber/epoxy blend with a fluoropolymer (Teflon-like) coating. A check valve is placed in both the inhalation end and exhalation outlet of the nasal mask, in order to control the direction of airflow while using the Nasal Ranger®.
The Nasal Ranger® is designed with an air flow sensor that measures the sniffing flow rate through the field olfactometer. The measured flow is continually compared to design specifications, and feedback is provided to the user through LEDs mounted on the top of the unit. The user must sniff at a rate where the LEDs show the total airflow is in a target range (nominal 16–20 LPM). This feedback loop standardizes the sniffing rate for all users of this field olfactometer, and allows for certified traceable calibration of the device.

Methods

Hydrogen sulfide feed

Hydrogen sulfide (H$_2$S) was selected as the test odorant for this study due to the availability of a reliable, continuous hydrogen sulfide generator and a hand-held hydrogen sulfide detector. An Advanced Calibration Designs, Inc. (ADC) Cal2000 Hydrogen Sulfide Generator was used to produce the constant feed of H$_2$S. This generator utilizes an electrochemical cell to produce H$_2$S with an allowable feed rate ranging from 0.2 LPM to 1.0 LPM and a concentration range from 0.5 parts per million by volume (ppmv) to 50 ppmv (0.71 mg/m3 to 71 mg/m3).

The Cal2000 H$_2$S Generator was placed outside the chamber, where laboratory air served as the feed air. The generated H$_2$S was fed to the chamber through 1⁄₄″ Teflon Tubing.

Hydrogen sulfide measurement

An Arizona Instrument, Inc. (AZI) Jerome Model 631 H$_2$S hand-held analyzer was used to measure the H$_2$S concentration in the chamber with a lower detection limit of 0.001 ppmv (1.42 µg/m3). The AZI “Jerome Meter” utilizes an in-line sample pump to pull the air sample across a gold film. The change in resistance of this gold film is related to the concentration of hydrogen sulfide in the air.

The test chamber

The controlled chamber located at the St Croix Sensory, Inc. laboratory (Lake Elmo, MN) has dimensions of 3.75 m × 4.7 m × 2.7 m (47.3 m3). This chamber has four walls and a ceiling with 1″ dry-wall coated with several layers of non-porous paint. For this study, several standard room fans were used to mix the chamber air. No fresh air was supplied to the chamber during the test, i.e. zero air changes per hour, except minimal amounts as participants entered the chamber through the main door.

The H$_2$S was introduced to the chamber at the center of one wall, 1 meter off the floor. Figure 2 is a top view diagram of the test chamber, including the H$_2$S feed location, circulation fans, the main H$_2$S monitoring location, and field olfactometer testing locations.

A TSI, Inc. Q-Track Pro Indoor Air Quality Meter was used to monitor temperature, relative humidity, and carbon dioxide in the chamber.

Figure 1 Block diagram of field olfactometer air flow
Odour quantification

Trained and experienced users of field olfactometers were utilized for this study. Up to four observers used separate Nasal Ranger® field olfactometers and one observer used a Scentometer field olfactometer. All field olfactometer observations were made blind (i.e. the H₂S concentration was unknown to the observers).

The hydrogen sulfide tracer gas feed was started and the H₂S concentration was continuously monitored at the center of the chamber. The Jerome hydrogen sulfide meter was used to make periodic checks of H₂S concentration from wall to wall and from floor to ceiling. All measurements were within ±1.5 ppbv (±2.13 µg/m³), confirming that the chamber was well mixed. As the concentration of H₂S increased, the odour observers periodically entered the chamber and used a field olfactometer to determine the D/T of the odour. A total of three separate test trials were performed for this study.

During trial #3, three grab air samples were collected in Tedlar bags for analysis in the odour laboratory at St Croix Sensory. Laboratory olfactometry was conducted following odour testing standards ASTM International E679 and EN13725 (ASTM, 1991; CEN, 2003).

Throughout the study, the following parameters were recorded: (1) hydrogen sulfide concentration inside the chamber, (2) D/T values obtained by each observer, and (3) recognition threshold values obtained by laboratory olfactometry in trial #3.

Results and discussion

Dilution-to-threshold relationship to hydrogen sulfide concentration

Figure 3 shows a graph of D/T values determined by the observers at various H₂S concentrations inside the chamber. All observations throughout the three trials are represented in this figure. The data show consistency between field olfactometers and users. The figure can be summarized by the following general “rules of thumb”:

- 2.8–5.7 µg/m³ (2–4 ppbv) H₂S yields a D/T of 2
- 5.7–7.1 µg/m³ (4–5 ppbv) H₂S yields a D/T of 4
- 5.7–15.6 µg/m³ (4–11 ppbv) H₂S yields a D/T of 7
- 15.6–24.1 µg/m³ (11–17 ppbv) H₂S yields a D/T of 15
- 24.1–39.8 µg/m³ (17–28 ppbv) H₂S yields a D/T of 30
- 39.8–56.8 µg/m³ (28–40 + ppbv) H₂S yields a D/T of 60

It should be noted that all trials were complete before the H₂S concentration reached 64 µg/m³ (45 ppbv). It is expected that H₂S concentrations higher than 56.8 µg/m³ (40 ppbv) will also yield a D/T of 60.
Of the eight observation points which deviated from these “rules of thumb”, five were observations using a Scentometer. These five observations were lower D/Ts than were recorded by the other observers with Nasal Rangers®. Specifically, note that while Nasal Ranger® readings were D/T = 60, the Scentometer had readings of 31, since it does not have a D/T = 60 position.

A statistical review was performed to compare responses by the Scentometer user to those responses by the Nasal Ranger® users. There were 16 observation points where both Scentometer and Nasal Ranger® readings were recorded by different observers. A student t-test performed shows no significant difference between these observations at a 95% confidence level (p = 0.06). Further, the comparison had a Pearson’s correlation Coefficient (r) of 0.82.

Comparison of observations made by multiple Nasal Ranger® users at the same observation points, was performed with an analysis of variance (ANOVA). Results of this analysis

![Figure 3](image.png)

Figure 3 Observed dilution-to-threshold (D/T) values determined by observers as the concentration of hydrogen sulfide was increased in an environmental chamber. The data points represent observations made during three trials. Observations were made by one Scentometer user and four Nasal Ranger® users

![Figure 4](image.png)

Figure 4 Calculated hydrogen sulfide odour threshold concentrations based on dilution-to-threshold (D/T) values observed at hydrogen sulfide chamber concentrations from 0–65 µg/m³. Trendlines have been added referencing specific dilution-to-threshold (D/T) positions available on commercial field olfactometers. Calculated recognition threshold (RT) values are shown for three odorous air samples collected from the test chamber which were evaluated by laboratory olfactometry following ASTM International E679 and EN13725
at the 95% confidence level show no significant difference between users over the range of observations ($p = 0.309$).

Hydrogen sulfide threshold concentration

The odour threshold concentration of hydrogen sulfide can be calculated using the observed dilution-to-threshold (D/T) results. The chamber concentration divided by the D/T value yields the H_2S threshold concentration. Figure 4 displays the calculated odour thresholds versus the chamber concentration.

Figure 4 shows that 98% of observations had a calculated H_2S threshold between 0.70 and 3.0 µg/m³ (0.5–2.0 ppbv). There was only one observation point outside this range. At a chamber concentration of 12.8 µg/m³ (9 ppbv), there was one comparatively low Scentometer reading that was only D/T = 2. This yielded an odour threshold of 6.39 µg/m³ (4.5 ppbv). Less than 10% of observations had a calculated H_2S threshold greater than 2.2 µg/m³ (1.5 ppbv).

These calculated odour thresholds follow a set of six increasing trendlines. Note that these six linear curves are directly related to the step-wise increase in observed D/T values on the field oflactometers (D/T values of 2, 4, 7, 15, 30, and 60). Figure 4 has six trendlines superimposed on to the data points, showing the results related to each discrete D/T position on the Scentometer and Nasal Ranger field oflactometers.

It is important to define the threshold determined using a field oflactometer. A detection threshold (DT) is defined as that point where the diluted odour sample just becomes different from the odour-free air. A recognition threshold (RT) is the point where the diluted odour is different from the odour-free air and has a discernable character. For field oflactometers, it is more appropriate to consider the dilution-to-threshold value as a recognition threshold. Outside the controlled conditions of a laboratory, an observer will usually need to notice an odour character before confidently declaring the D/T value of the odour.

The American Industrial Hygiene Association (1989) document titled, “Odor Thresholds for Chemicals with Established Occupational Health Standards” has the detection threshold of H_2S listed as 0.5 ppbv and a recognition threshold of 5 ppbv, which is equivalent to 0.71 µg/m³ to 7.1 µg/m³ (AIHA, 1989; WEF, 1995).

The Boelens Aroma Chemical Information Service publication entitled, “Compilation of Odour Threshold Values in Air and Water” has documented odour thresholds of H_2S varying from as low as 0.0001 mg/m³ to as high as 5 mg/m³, 0.07 ppbv to 3.5 ppmv (van Gemert, 1999). The data compiled from literature published in the 1980s show these thresholds ranging from 0.71 µg/m³ to 7.1 µg/m³ (0.5–5 ppbv). These thresholds were not completely defined as detection or recognition thresholds by their original sources.

In 2000, St Croix Sensory conducted a research project, funded by the Sacramento Regional County Sanitation District (Sacramento County, California), to determine the odour threshold of hydrogen sulfide using odour testing standards ASTM International E679 (1997) and EN13725. During this project, the detection threshold of hydrogen sulfide was found to range from 0.57 µg/m³ to 1.42 µg/m³ (0.4–1.0 ppbv) and the recognition threshold was found to range from 0.71 µg/m³ to 3.2 µg/m³ (0.5–2.25 ppbv).

These published threshold values are comparable to those found in this current study with field oflactometers.

Comparison of field oflactometer to laboratory oflactometer results

During trial #3, three grab air samples were collected in Tedlar bags for analysis in the odour laboratory at St. Croix Sensory following ASTM International E679 (1997) and
EN13725. Figure 4 plots the results of the laboratory olfactometer testing based on the calculated odour recognition threshold of hydrogen sulfide (black circles). These results ranged from 0.64 to 1.3 µg/m³ (0.45–0.9 ppbv).

Conclusions

A standard method for measuring and quantifying odour in the ambient air utilizes a portable odour detecting and measuring device known as a field olfactometer. The field olfactometer dynamically dilutes the ambient air with carbon-filtered air in distinct dilution ratios known as dilution-to-threshold dilution factors (D/Ts).

For this study, a controlled environmental chamber was utilized, with hydrogen sulfide as the known test odourant. Test operators entered the chamber to measure the D/T value of the odour as the hydrogen sulfide concentration increased. D/T values were measured by one Scentometer (Barney Sutcliffe Corp.) user and four Nasal Ranger Field Olfactometer (St Croix Sensory, Inc.) users. Odorous air samples were collected from the chamber and evaluated by laboratory olfactometry following ASTM International E679 and EN13725. Threshold results were compared to the results obtained by the field olfactometer observations.

During the study, no significant difference was found between results obtained by the one Scentometer user and the four Nasal Ranger users. Furthermore, there was also no significant difference found between results obtained by the four different Nasal Ranger users.

Dilution-to-threshold values were correlated to hydrogen sulfide concentrations in the environmental chamber. The following ranges of results were found:

- 2.8–5.7 µg/m³ (2–4 ppbv) H₂S yields a D/T of 2
- 5.7–7.1 µg/m³ (4–5 ppbv) H₂S yields a D/T of 4
- 5.7–15.6 µg/m³ (4–11 ppbv) H₂S yields a D/T of 7
- 15.6–24.1 µg/m³ (11–17 ppbv) H₂S yields a D/T of 15
- 24.1–39.8 µg/m³ (17–28 ppbv) H₂S yields a D/T of 30
- 39.8–56.8 µg/m³ (28–40+ ppbv) H₂S yields a D/T of 60

The D/T results obtained by the field olfactometer observations were used to calculate hydrogen sulfide thresholds for the users. Calculated H₂S thresholds were found to range from 0.7 to 3.0 µg/m³ (0.5–2.0 ppbv). 90% of all values were in the range of 0.7–2.2 µg/m³ (0.5–1.5 ppbv). The results of laboratory olfactometry in this study yielded recognition thresholds of 0.64–1.3 µg/m³ (0.45–0.9 ppbv).

The threshold values obtained by field and laboratory olfactometry are consistent with published thresholds for hydrogen sulfide, as well as previous research conducted at St Croix Sensory.

The results from this study provide users of field olfactometers with a point of reference for the D/T values. The correlation of D/T values with hydrogen sulfide allows users to roughly estimate hydrogen sulfide concentrations, based on D/T values observed in the ambient air.

References

Water Environment Federation (WEF) and the American Society of Civil Engineers (1995). *WEF Manual of Practice No. 22 (MOP-22): Odor Control in Wastewater Treatment Plants*, Alexandria, VA, USA.