Significance of Garlic and Its Constituents in Cancer and Cardiovascular Disease

Inhibition of Sterol 4α-Methyl Oxidase Is the Principal Mechanism by Which Garlic Decreases Cholesterol Synthesis$^{1–3}$

Dev K. Singh and Todd D. Porter4

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082

ABSTRACT Clinical and experimental evidence indicates that garlic ingestion lowers blood cholesterol levels, and treatment of cells in culture with garlic and garlic-derived compounds inhibits cholesterol synthesis. To identify the principal site of inhibition in the choles terolgenic pathway and the active components of garlic, cultured hepatoma cells were treated with aqueous garlic extract or its chemical derivatives, and radiolabeled cholesterol and intermediates were identified and quantified. Garlic extract reduced cholesterol synthesis by up to 75% without evidence of cellular toxicity. Levels of squalene and 2,3-oxidosqualene were not altered by garlic, indicating that the site of inhibition was downstream of lanosterol synthesis, and identical results were obtained with 14C-acetate and 14C-ovalactone, confirming that 3-hydroxy-3-methylglutaryl-CoA reductase activity was not affected in these short-term studies. Several methylsterols that accumulated in the presence of garlic were identified by coupled gas chromatography–mass spectrometry as 4,4'α-dimethylzymosterol and a possible metabolite of 4-methylzymosterol; both are substrates for sterol 4'α-methyl oxidase, pointing to this enzyme as the principal site of inhibition in the choles terolgenic pathway by garlic. Of 9 garlic-derived compounds tested for their ability to inhibit cholesterol synthesis, only diallyl disulfide, diallyl trisulfide, and allyl mercaptan proved inhibitory, each yielding a pattern of sterol accumulation identical with that obtained with garlic extract. These results indicate that compounds containing an allyl-disulfide or allyl-sulfhydryl group are most likely responsible for the inhibition of cholesterol synthesis by garlic and that this inhibition is likely mediated at sterol 4'α-methyl oxidase. J. Nutr. 136: 759S–764S, 2006.

KEY WORDS: • garlic • cholesterol synthesis • sterol 4'α-methyl oxidase • diallyl disulfide • lanosterol

Garlic is regarded with much interest by the general public as a means to safely reduce blood cholesterol levels. Indeed, several clinical trials and meta-analyses support the ability of garlic to reduce blood cholesterol, although the decrease is typically modest (1–3). Although the mechanism by which garlic reduces cholesterol levels has not been established, studies with garlic extracts have shown that garlic compounds inhibit cholesterol synthesis in cultured hepatocytes, in liver homogenates, and in cultured hepatoma cells (4–7) and that this inhibition occurs in a dose-dependent manner that is not related to cellular toxicity. In several studies the use of 14C-ovalactone instead of acetate prevented the decrease in cholesterol synthesis (5,8). This suggests that garlic decreased 3-hydroxy-3-methylglutaryl (HMG)5-CoA reductase activity, the second and regulated step in cholesterol synthesis. Other enzymes in the pathway were not examined, although Gebhardt et al. (5,9,10) reported that higher concentrations of extract, as well as allin-derived compounds, led to the accumulation of lanosterol, dihydrolanosterol, and 7-dehydrocholesterol, suggesting the inhibition of later steps in cholesterol synthesis.

1 Published in a supplement to The Journal of Nutrition. Presented at the symposium “Significance of Garlic and Its Constituents in Cancer and Cardiovascular Disease” held April 9–11, 2005 at Georgetown University, Washington, DC. The symposium was sponsored by Strang Cancer Prevention Center, affiliated with Weill Medical College of Cornell University, and Harbor-UCLA Medical Center, and co-sponsored by American Botanical Council, American Institute for Cancer Research, American Society for Nutrition, Life Extension Foundation, General Nutrition Centers, National Nutritional Foods Association, Society of Atherosclerosis Imaging, Susan Samueli Center for Integrative Medicine at the University of California, Irvine. The symposium was supported by Alan James Group LLC, Agencas Motta, S.A., Antistress AG, Amla, Birger Ledin AB, Ecolandia International, Essential Sterolin Products (PTY) Ltd., Grand Quality LLC, IC Vietnam, Intervec Ltd., Jenn Health, Kernpharm BV, Laboratorii Mizar SAS, Magna Trade, Manavita B.V.B.A., MaxiPharm A/S, Nature's Farm, Naturkos Rui a.s., Nichea Company Limited, Nutra-Life Health & Fitness Ltd., Oy Valioravinto Ab, Panax, P.T. Nutriprima Jayasakti, Purity Life Health Products Limited, Quest Vitamins, Ltd., Sabincro S.A., The AIM Companies, Valosun Ltd., Wakunaga of America Co. Ltd., and Wakunaga Pharmaceutical Co., Ltd. Guest editors for the supplement publication were Richard Rivlin, Matthew Budoff, and Harunobu Amagase. Guest Editor Disclosure: R. Rivlin has been awarded research grants from Wakunaga of America, Ltd. and received an honorarium for serving as co-chair of the conference; M. Budoff has been awarded research grants from Wakunaga of America, Ltd. and received an honorarium for serving as co-chair of the conference; and Harunobu Amagase is employed by Wakunaga of America, Ltd.

2 Author disclosure: No relationships to disclose.

3 Supported by a grant from the American Heart Association.

4 To whom correspondence should be addressed. E-mail: tporter@email.uky.edu.

5 Abbreviations used: DMEM, Dulbecco’s modified medium; HMG, 3-hydroxy-3-methylglutaryl.
Garlic is rich in sulfur-containing compounds, principally S-allylcysteine and allin, the latter of which is rapidly metabolized when garlic is crushed and alliinase is released. The highly reactive sulfenic acid that is formed from allin condenses to allin, which then rapidly recombines to various di- and trisulfides, depending on conditions. Ultimately these compounds are believed to yield allyl mercaptan and allyl methyl sulfide, which can react with cellular components or be eliminated on the breath. The organosulfur compounds formed in garlic are highly reactive with other sulphhydryl compounds, including cysteines found in proteins, and it is likely that the chemical modification of enzyme-sulfhydryls is responsible for the purported therapeutic effects of garlic. The question of which compounds are most important to the therapeutic effects of garlic remains unresolved, although several studies have shown that the diallyl disulfides, allyl mercaptan, and S-alk(en)yl cysteines are effective inhibitors of cholesterol synthesis in cells (6–8, 10). Similarly, the enzyme targets that mediate the effects of garlic have not been identified.

The present studies were undertaken to identify the cholesterologenic enzyme or enzymes inhibited by garlic and the active principles therein. Our studies with hepatoma cells in which cholesterol and intermediates are radiolabeled and identified by coupled gas chromatography–mass spectrometry reveal that garlic causes the accumulation of sterol 4α-methyl oxidase substrates and that an allyl disulfide or allyl sulphhydryl group is necessary for inhibition by garlic-derived compounds.

MATERIALS AND METHODS

Chemicals. Dulbecco’s modified medium (DMEM), penicillin-streptomycin-glutamine (× 100), fetal bovine serum, and trypsin were purchased from Invitrogen. Diallyl disulfide, diallyl trisulfide, allyl mercaptan, allyl methyl sulfide, lactate dehydrogenase, pyruvate, NADH, Triton X100, cholesterol, ketocanazole, squalene, and lanosterol were purchased from Sigma Chemical Co. Zyomterol (8,24(5α)-cholestadien-3β-ol), desmosterol (5,24-cholestadien-3β-ol), 24-dihydrolanosterol, lathosterol (7, 5α-cholen-3β-ol), and 7-dehydrolanosterol were purchased from Steraloids, Inc. Terbinafine (500), fetal bovine serum, and trypsin (EC Disembrator, Fisher Scientific) at medium setting on ice with 10 8-s pulses, separated by 30 s each. Lipids were extracted into 5 mL of chloroform:methanol (2:1), the solvent was removed by evaporative centrifugation, and the lipids were resuspended in 50 μL of chloroform/methanol and spotted onto silica thin layer plates (Whatman). Chromatography was carried out in petroleum ether:ethyl ether:acetic acid (60:40:1). Cholesterol, 7-dehydrocholesterol, lanosterol, dihydrolanosterol, lathosterol, desmosterol, and zymosterol were identified by cochromatography of authentic standards visualized by iodine vapor and quantified by electronic autoradiography (Packard Instant Imager). Further confirmation of the identity of these and unknown sterols was obtained by scraping the corresponding region of nonradioabeled samples into chloroform:methanol (2:1), derivatizing the samples with trimethylsilylade, and submitting them to gas-chromatographic separation on a Trace gas chromatograph with a DB-5ms column with helium carrier gas, followed by ion-trap mass spectrometry on a Thermofinnigan PolarisQ at the University of Kentucky Mass Spectrometry Facility.

Determination of squalene, 2,3-oxidosqualene, and lanosterol synthesis. For the determination of squalene, 2,3-oxidosqualene, and lanosterol synthesis, cells were incubated as described above for cholesterol synthesis with the inclusion of 60 μM/L terbinafine, an inhibitor of squalene monooxygenase (for the determination of squalene), or 0.3 mmol/L AMO 1618, an inhibitor of oxidosqualene cyclase (for the determination of 2,3-oxidosqualene), or 0.1 μmol/L ketoconazole, an inhibitor of lanosterol demethylase (for the determination of lanosterol). Lipids were saponified by the addition of 0.5 mL of 10% methanolic potassium hydroxide and incubated at 80°C for 1 h. For the determination of squalene and 2,3-oxidosqualene, the neutral lipids were extracted into 5 mL of petroleum ether; the solvent was removed by centrifugal evaporation, and the samples were resuspended in 50 μL of petroleum ether and resolved by silica thin-layer chromatography in 5% ethyl acetate in hexane. Lanosterol was determined as described for cholesterol. Authentic standards for squalene and lanosterol were visualized by iodine-vapor staining; 2,3-oxidosqualene was confirmed by cochromatography of the product of 14C-squalene conversion to 2,3-oxidosqualene by purified recombinant squalene monooxygenase (11). Further confirmation of these products was obtained by scraping the corresponding region of nonradioabeled samples into chloroform:methanol (2:1) and submitting them to mass spectrometric analysis as described above.

RESULTS

Treatment of McARH7777 rat hepatoma cells with an aqueous garlic extract (;5 g/L) reduced the incorporation of 14C-acetate into cholesterol over a 3-h time period by ≤75% without evidence of cellular toxicity (Fig. 1). At 7.5 g/L, garlic extract caused a marked elevation in lactate dehydrogenase activity in the medium, indicating the release of this enzyme from cells, and a significant loss of cell viability as measured by trypan blue exclusion. The ability of the extract to inhibit cholesterol synthesis at lower concentrations without toxicity suggested that 1 or more enzymes in the cholesterologenic pathway were inhibited by garlic components.

Earlier studies had suggested that garlic inhibits cholesterol synthesis by reducing HMG-CoA reductase activity (5,8–10,12). To evaluate this possibility, squalene and 2,3-oxidosqualene synthesis was monitored in the presence of garlic extract, with the use of both 14C-acetate and 14C-mevalonate as substrates. Squalene and 2,3-oxidosqualene are the last 2 nonsterol intermediates in the cholesterologenic pathway; as shown in Figure 2, the labeling of these intermediates was not affected by treatment with garlic extract. Moreover, cholesterol
Aqueous garlic extract does not inhibit the synthesis of nonsterol cholesterol intermediates. The effect of garlic extract on the incorporation of \(^{14}\)C-acetate into squalene and cholesterol (A) and the incorporation of \(^{14}\)C-mevalonate into 2,3-oxidosqualene and cholesterol (B) were monitored by thin-layer chromatography coupled with quantitative radiography. Each value represents the mean and SEM of 3 determinations carried out in duplicate. The labeling of 2,3-oxidosqualene from \(^{14}\)C-acetate was similarly unaffected by garlic extract (data not shown).
garlic extract inhibited HMG-CoA reductase activity by ≤23%, although a much greater reduction was seen in cholesterol synthesis and was attributed to the inhibition of additional downstream enzymes. At very low garlic concentrations, only HMG-CoA reductase inhibition appeared relevant, given that the substitution of 14C-mevalonate for 14C-acetate reduced the inhibition of cholesterol synthesis, as shown in the upper tracing labeled “Ketoconazole” in panel B. Bands “a” and “b” were eluted from the cells incubated in the presence of garlic (2.5 g/L) and submitted to gas chromatographic separation, as shown in the middle and lower tracings (labeled “a” and “b”) in panel B. (B) Gas chromatographic profiles of bands “a” and “b”; sterols were identified by mass spectrometry for the peaks at 24.40 (lanosterol), 23.23 (4-methylcholesterol, shown in panel C), and 24.88 (4,4-dimethylzymosterol, shown in panel D). Other peaks did not correspond to sterols or could not be identified. The autoradiogram in (A) was merged from 2 images for clarity of presentation.

Our studies do not reveal an effect of garlic extract on HMG-CoA reductase, although a small reduction in activity cannot be excluded. The lack of change in squalene and 2,3-oxidosqualene labeling over a range of garlic concentrations that reduces cholesterol synthesis by ≤75% argues that inhibition of 1 or more enzymes downstream of HMG-CoA reductase must predominate at higher concentrations of garlic, a conclusion also reached by Gebhardt (5,9,10). In the studies of Liu and Yeh (7,8) relatively high concentrations of the S-alk(en)yl cysteines were needed to decrease cholesterol synthesis; the maximum inhibition achieved with S-allylcysteine was only 50% at a concentration of 4 mmol/L, yielding an IC$_{50}$ of 0.61 mmol/L.
Thin-layer radiochromatographic analysis of cholesterol synthesis in the presence of garlic-derived compounds. Hepatoma cells were incubated in duplicate with \(^{14}C \)-acetate in the presence of the indicated garlic compound, and radiolabeled lipids were separated by thin-layer chromatography and visualized and quantified by autoradiography. Co, untreated cells; DADS, diallyl disulfide; AM, allyl mercaptan; DATS, diallyl trisulfide. The asterisk indicates the position of cholesterol.

At this concentration we obtained a maximum of 10% inhibition with both \(^{14}C \)-acetate and \(^{14}C \)-mevalonate, arguing against a specific effect on HMG-CoA reductase. It should be noted, however, that Liu and Yeh used freshly isolated rat hepatocytes, whereas we used cultured rat hepatoma cells; differences between hepatocytes and hepatoma cells, as well as the medium and culture conditions, may explain the different results.

Gebhardt concluded that higher concentrations of garlic and garlic-derived compounds inhibit lanosterol demethylase (5,9,10) on the basis of the accumulation of a radiolabeled band on thin-layer chromatography with the mobility of lanosterol. Our mass spectrometric analysis of this product and a second radiolabeled band with lower mobility was unable to demonstrate the presence of lanosterol but instead identified 4,4-dimethylzymosterol and 4-methylathosteryl, a putative metabolite of 4-methylzymosterol. 4,4-Dimethylzymosterol and 4-methylathosterol are substrates for sterol 4α-methyl oxidase, an enzyme downstream of lanosterol demethylase that is known to be sensitive to sulphydryl reagents (14). Moreover, ketoconazole, an inhibitor of lanosterol demethylase, yielded a different pattern of sterol intermediates both in our study (Fig. 3) and in Gebhardt’s report (5), lending support to our conclusion that sterol 4α-methyl oxidase, rather than lanosterol demethylase, is the most sensitive target of garlic inhibition.

Of 9 garlic-derived organosulfur compounds examined in the present study, only diallyl disulfide, diallyl trisulfide, and allyl mercaptan were inhibitory to cholesterol synthesis, each yielding a pattern of sterol accumulation identical with that obtained with garlic extract. Diallyl disulfide has previously been shown to inhibit HMG-CoA reductase in microsomes (12) and cholesterol synthesis in liver homogenates (4), primary hepatocytes (7,10,15), and hepatoma cells (6); diallyl trisulfide was similarly found to be effective in primary hepatocytes (7) and hepatoma cells (6), although cell toxicity was generally greater with the trisulfide, as found in the present study. Allyl mercaptan, the least potent inhibitor in our study, was similarly found to be 10–15% as effective as diallyl disulfide in hepatocyte culture (10,15) and hepatoma cells (6,16). Other garlic-derived compounds found to be effective inhibitors of cholesterol synthesis without overt toxicity include ajoene and methyl ajoene, allicin, 1,3-vinyl dithin (4,9,10), and some S-alk(en)yl cysteines (7,8,17). Excluding the alk(en)yl cysteines and the cyclic 1,3-vinyl dithin, all the inhibitory compounds share an allyl (or vinyl) group adjacent to a disulfide or sulphydryl group. Garlic compounds found not to be effective inhibitors lack this allyl-disulfide or allyl-sulphydryl group and include alliin, S-methylcysteine, methylcysteine sulfoxide, propylcysteine sulfoxide, diallyl sulfd, dipropyl sulfd, and allyl methyl sulfd (4,5,7,9,15). Allin, allyl methyl sulfd, and several alk(en)yl cysteines (S-allylcysteine, S-methylcysteine, S-ethylcysteine, and S-propylcysteine) were shown to be ineffective in the present study.

The alk(en)yl cysteines S-allylcysteine, S-ethylcysteine, and S-propylcysteine appear to be unique in that they do not conform to the allyl disulfide/sulphydryl rule. Liu and Yeh (8) have shown that incubation of hepatocytes with S-allyl-, S-ethyl-, and S-propyl-cysteine lowers microsomal HMG-CoA reductase activity by 30–40% without changing enzyme mRNA or protein levels. This lower activity was attributed to an increase in the amount of phosphorylated (inactivated) enzyme or protein levels. This lower activity was attributed to an increase in the amount of phosphorylated (inactivated) enzyme in cells incubated with the alk(en)yl cysteines and additionally to an increase in sulphydryl oxidation in HMG-CoA reductase in the presence of S-allylcysteine. Although the S-alk(en)yl cysteines did not inhibit cholesterol synthesis in the present study, this laboratory has previously found S-allylcysteine to inhibit squalene monoxygenase, a downstream enzyme in the cholesterologenic pathway, with an \(IC_{50} \) of 110 \(\mu \)mol/L (18); S-methyl-, S-ethyl-, and S-propyl-cysteine, each of which lacks the allyl moiety, were not inhibitory to this enzyme.
Conjugation of the alk(en)yl cysteines to glutamate or acetate to form the γ-glutamyl and N-acetyl conjugates reduces their inhibitory potency (7), suggesting that there is something unique about the alk(en)yl cysteines that enhances their ability to downregulate HMG-CoA reductase activity; nonetheless, it should be noted that the concentrations of these organosulfur compounds needed to reduce HMG-CoA reductase activity in hepatocytes by 50% approaches the millimolar range (0.58–0.72 mmol/L).

Inhibition of cholesterol synthesis is thought to be a principal mechanism by which garlic lowers blood cholesterol, although other mechanisms may also be important. Indeed, there are very few studies on the effect of garlic on cholesterol synthesis in whole animals, and those early studies were limited to documenting a decrease in HMG-CoA reductase activity (13,19). Given that HMG-CoA reductase is down-regulated by isoprenoid and sterol intermediates (20–22), it can be expected that inhibition of a downstream cholesterolgenic enzyme will result in the accumulation of 1 or more intermediates that may compete with the cholesterolgenic pathway by feedback inhibition. Our conclusion that garlic inhibits sterol 4α-methyl oxidase is in accord with this view, given that 4-demethylated sterols, including lanosterol and dimethylzymosterol, have been shown to strongly promote the degradation of HMG-CoA reductase via an Insig-mediated pathway (22) (Fig. 6). Further studies are needed to determine whether garlic-derived organosulfur compounds inhibit purified sterol 4α-methyl oxidase and whether garlic effectively inhibits this enzyme in vivo.

LITERATURE CITED