Plastic Response of Crown Architecture to Crowding in Understorey Trees of Two Co-dominating Conifers

KOICHI TAKAHASHI
Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060, Japan

Received: 4 July 1995 Accepted: 19 September 1995

Crown architecture and growth rate of trunk height, trunk diameter and lateral branches of understorey trees (5–10 m tall) were compared between two co-dominating conifers, Abies sachalinensis and Picea glehnii, in relation to the index of local crowding intensity, W, represented as a function of density, distance and basal area of taller neighbours. For the two conifers, the growth of trunk height and diameter was decreased and crowns became flat with increasing W, keeping crown projection area. Self-pruning of lower branches was more intense in Abies than in Picea in crowded conditions, while both conifers showed similar crown forms in less crowded conditions. These results suggest that the growth in lateral branches exceeded that in height in crowded conditions, especially in Abies. Tree age of both conifers increased with increasing W, resulting from the low growth rate in crowded conditions. The age of the longest and lowest branch of Picea, up to 150 years, was positively correlated with the tree age ranging from 70 to 250 years, whereas that of Abies was constant at around 30 years irrespective of tree age varying from 40 to 140 years. This result agrees with the observation that aged Abies had more flat-shaped crowns than in aged Picea in crowded conditions. These results suggest that each conifer adapted to crowding in different ways: high elongation of branches with high turnover rate for Abies and vice versa for Picea.

Key words: Abies, crown form, neighbourhood interference, Picea, plasticity.

INTRODUCTION

In trees, we observe a wide variety of crown forms between two extremes with alternative strategies: one is multilayer and the other is monolayer. The multilayered and monolayered species are thought to assimilate more efficiently than the others under full-lit and shaded conditions, respectively (Horn, 1971). The former adapts to early successional stages but is then replaced by the latter with the progression of succession. Thus, the optimal tree form depends largely on the stage of succession. This suggests the importance of crown architecture and assimilate partitioning among dimensions or organs of trees in relation to carbon gain (Küppers, 1985, 1989).

Saplings of co-occurring species in rain forests show a wide variety in architecture and allometry (Kohyama, 1987, 1991; King, 1990). Such variety reflects alternative choices between height growth for future gain and investment for survival at present height. Species with wider crowns and thicker trunk increase assimilative capacity and the probability of survival under canopy, while those with narrower crown and thinner trunk can grow faster in gaps due to lower biomass increment required per unit height growth. Kohyama and Hotta (1990) suggested that the latter species cannot regenerate until a gap is created in the canopy because these species tended to show a bimodal size distribution, while a reverse J-shaped size distribution indicates a continuous regenerating population (Whittaker, 1974; Hett and Loucks, 1976). All tree species, including emergent trees, should regenerate from a seed stage and must pass through the understorey to the canopy. Clearly, crown forms of tree species affect their demographic functions and regeneration properties.

Many studies have examined the characteristics of crown form by allometric relationships among dimensions. This method is useful and convenient to gain an insight into quantitative characteristics of architecture at the level of the species. Architecture of tree form is determined mainly by growth in each dimension. Self-pruning of branches is another significant factor determining tree form. The growth rate is evidently affected by light environments. Moreover, the growth of each dimension can respond differently to environments from other dimensions within an individual tree. It is generally observed in shade-tolerant species that the elongation of branches is not decreased as much as height growth in suppressed conditions (Kohyama, 1980; Canham, 1988). Plasticity in growth rate among dimensions increases the variety in architecture within a species. Therefore, studies on the architecture of crown forms should take account of the heterogeneity in local environments. There are a few studies on the response of growth rate and assimilate partitioning to local light environments (King, 1991, 1994). There is, however, no study that addresses the response of a whole architecture to different environments.

Immediate neighbours, rather than average density, have been appreciated to affect the survival and the growth of a target plant (Watkinson, Lonsdale and Firbank, 1983; Mithen, Harper and Weiner, 1984; Weiner, 1984; Penridge and Walker, 1986; Goldberg, 1987; Jones and Harper, 1987a, b). It is worth introducing an index of neighbourhood interference to describe the local environment of examined
trees. This study aims to: (1) compare the change in growth rates of trunk height, trunk diameter and the change in self-pruning of lower branches with local crowding between two co-dominating conifers; and (2) demonstrate the plasticity in crown architecture resulting from growth in each dimension and self-pruning, applying an index of neigbourhood interference.

STUDY SITE
The study site (43° 21’ N, 143° 9’ E, 1000 m above sea level) was located on the east-northeast slope of Mount Onsen in the east of Taiesets Mountains in Hokkaido, Japan. At 540 m above sea level, 2 km distant from the study area, the mean monthly temperatures in Jul. and Jan. 1993 were 13·3 and −13·9 °C, respectively, and annual precipitation is 1591 mm at the Nukabira weather station. In 1991, a 150 × 150 m plot was established and subdivided into 225 contiguous 10 × 10 m stands. These stands were classified into three forest floor types: soil (SL), rock-soil (RS) and rock-moss (RM). The soil depth on mother rocks decreased in the order of SL, RS and RM type stands (Takahashi, 1994). The dwarf bamboo Sasa senanensis Rehder covered the forest floor at SL type stands. This study was carried out exclusively at SL type stands to avoid the effect of edaphic heterogeneity. SL type stands were covered by a dense old-growth forest up to 30 m in top canopy height, dominated by two conifers, Abies sachalinensis Masters and Picea glehnii Masters. In this forest, Abies sachalinensis was more abundant in stem number, while Picea glehnii was dominant in basal area. Subordinate trees were all hardwoods: Betula ermanii Cham., Sorbus commixta Hedland, Acer ukurunduense Trantv. et Meyer and Acanthopanax sciadophylloides Fr. et Savat. Total basal area of trees larger than 10 cm in trunk diameter was 38·8 m² ha⁻¹, and the basal area percentage of each component species was as follows: Abies sachalinensis, 35·6%; Picea glehnii, 44·2%; Betula ermanii 13·8% and others 6·4%. Further details of the forest structure are described in Takahashi (1994).

METHODS
Measurement of crown architecture
To examine effects of the local crowding on the crown architecture of understorey trees, 5–10 m tall trees were surveyed in this study. Trees of this size were entirely under the forest canopy except in canopy gaps, and their trunk diameters were large enough to allow the taking of core samples. All Abies (44 trees) and Picea (38 trees) of this size within subquadrats of 0·39 ha and 0·47 ha, respectively, were examined in 1991–1992. Crown forms of conifers can be approximated by elliptic cones. Therefore, crown architecture can be described by three dimensions, i.e. the top height of trunk, the height of the lowest branch (i.e. almost the longest one), and the horizontal width of crown. The trunk diameter (at breast height) is another important component reflecting the capacity of physical support and the total foliage mass, as examined in the pipe model theory (Shinozaki et al., 1964a, b; Robichaud and Methven, 1992). These four dimensions were examined along the gradient of local environments expressed by the crowding index W (see next section).

The depth of crown (top height minus the height at the base of lowest living branch) and the widths of crown in two perpendicular directions (including that of the maximum width) were measured. The whole canopy shape of examined trees was evaluated by two indices, the crown depth ratio (CDR) and the crown width ratio (CWR). CDR was defined as the ratio of crown depth to the top height, and CWR as the ratio of the mean crown width to the top height. The last 10-year increment of trunk height was measured by counting the number of annual bud scars from the top of the trunk in 1992. The growth in trunk diameter at breast height of target trees between 1991 and 1994 was obtained by repeated diameter measurements. The elongation of lateral branches was not measured, because it was difficult for the size of sampled trees (5–10 m tall) with non-destructive methods. A relationship between tree age and the age of the lowest (and oldest) branch gives an insight into the process of self-pruning. Tree age was determined from increment cores sampled from the trunk at 30 cm above the ground level. The age of the lowest branch was measured by counting the number of annual bud scars on trunk and branch, or cores sampled at the base of the branch.

Estimation of local crowding
To describe the local crowding around each target understorey tree, this study employed Weiner’s (1984) measure of neighbourhood interference (hereafter crowding index, W):

\[W = \sum_{i=1}^{n} (s_i d_i^2), \]

where \(n \) is the total number of neighbours, \(d_i \) is the distance (m) from the target tree to the \(i \)-th neighbour and \(s_i \) is the size of the \(i \)-th neighbour. In this study, the size of neighbour \(s_i \) is represented by its basal area (cm²), because individual basal area is roughly proportional to the individual leaf mass (Shinozaki et al., 1964a, b). The neighbour was defined as any tree (including hardwood tree) taller than the target understorey tree and within 8 m from the target tree; this is beyond the mean distance (6·3 m) of crown spread for overstorey trees taller than 10 m.

Weiner defined a neighbour as any tree within a given distance regardless of the size of the target tree. In contrast, this study calculates the crowding index only for taller neighbours, because the primary interest of this study is to express the effect of shading on understorey saplings in a forest with developed crown stratification. The present one-sided crowding index was very similar to Weiner’s two-sided crowding index for the examined height range of understorey trees (5–10 m tall) in this forest, after log-transformation (\(R = 0·997 \)). Gaudet and Keddy (1988) showed in herb species that the shading effect is proportional to the above ground biomass irrespective of species. It is, however, expected that the shading effect per unit basal area of deciduous hardwoods is smaller than that of evergreen
conifers. The percentage of basal area occupied by hard-woods was relatively small (20.2%), and the crowding index for pooled species was not so different from that counting only the conifers, after log-transformation \((R = 0.802)\). For simplicity, the shading effect was assumed to be equal among component species.

All statistical analyses were carried out with SYSTAT 5. Data for CDR and CWR were arcsine-transformed before statistical analysis due to ratio data (Sokal and Rohlf, 1981).

RESULTS

The growth in top height was depressed by local crowding in both *Abies sachalinensis* and *Picea glehnii* (Fig. 1A). Although the rate of height growth of *Abies* was higher in less crowded conditions than that of *Picea*, the height increment was similar between the two conifers in more crowded conditions. *Abies* was thus more susceptible to crowding, because of a higher decline of growth rate with increased crowding, \(W\) (ANOVA, \(F_{(1,7)} = 482, P < 0.05\)). The growth in trunk diameter of the two conifers decreased significantly with increased crowding, \(W\) (Fig. 1B). *Abies* showed a higher growth rate in diameter than *Picea* in all crowded conditions (ANCOVA, \(F_{(1,7)} = 5.31, P < 0.05\)). The regression of the relationship between absolute growth rate in height (AHGR, cm year\(^{-1}\)) and that in trunk diameter (ADGR, cm year\(^{-1}\)) was AHGR = 73.3 ADGR + 8.8 (\(R = 0.82, P < 0.001\)) for *Abies* and AHGR = 35.5 ADGR + 11.1 (\(R = 0.44, P < 0.05\)) for *Picea*. A significant difference in the regression between two conifers was found in the slope (ANOVA, \(F_{(1,7)} = 8.61, P < 0.01\)). Thus, it is expected that *Abies* grows more in trunk height than in trunk diameter in

![Fig. 1](https://academic.oup.com/aob/article-abstract/77/2/159/2587403)

![Fig. 2](https://academic.oup.com/aob/article-abstract/77/2/159/2587403)

\(\text{CDR}\) and \(\text{CWR}\) for the two conifers. The correlation coefficients are \(-0.745 (P < 0.001)\) and \(-0.684 (P < 0.001)\) for height growth rate of *Abies sachalinensis* (○) and *Picea glehnii* (●), respectively, and \(-0.691 (P < 0.001)\) and \(-0.500 (P = 0.001)\) for trunk diameter growth rate of *Abies sachalinensis* and *Picea glehnii*, respectively.

\(\text{CDR}\) and \(\text{CWR}\) for the two conifers. The correlation coefficients are \(-0.571 (P < 0.001)\) and \(-0.396 (P < 0.05)\) for crown depth ratio of *Abies sachalinensis* (○) and *Picea glehnii* (●), respectively, and \(-0.107\) (not significant) and 0.369 \((P < 0.05)\) for crown width ratio of *Abies sachalinensis* and *Picea glehnii*, respectively.
less crowded conditions as compared with *Picea*. The trunk shape was determined by the relationship of growth rates between trunk height and diameter. Consequently, *Picea* had a thicker trunk per trunk height than *Abies* (ANOVA, $F_{1,78} = 7.06$, $P < 0.01$, data not shown).

The ratio of crown depth to top height (CDR) for *Abies* was decreased more steeply than that for *Picea* with local crowding (ANOVA, $F_{1,78} = 4.94$, $P < 0.05$; Fig. 2A), although the two conifers had similar crown depth in less crowded conditions. *Abies* suffered more severe self-pruning in crowded conditions than *Picea*. There was no significant difference in the crown projection area per top height of trunk between the two conifers (ANOVA, $P > 0.05$, data not shown). The ratio of crown width to top height (CWR) for *Picea* was positively correlated with W ($P < 0.05$; Fig. 2B), while the correlation for *Abies* was not significant. A non-significant correlation between CWR and W in *Picea* was, however, found when one point at the highest W was deleted ($R = 0.164$, $P > 0.05$). Thus, crown width was less affected by local crowding. In crowded conditions, the two conifers develop a flat-shaped crown without expanding the crown projection area, which is due to the self-pruning of lower branches resulting in the small CDR. This tendency was more conspicuous in *Abies* than in *Picea*. There was no significant difference between the two conifers in mean CWR leaving the W-dependence out of consideration (*Abies*, 0.394; *Picea* 0.398; $P > 0.05$).

Crown depth and width reflect integrated lengths grown in the same period, since the base of the longest branch is at the bottom of the cone-shaped crown. Self-pruning of *Abies* was more severe in crowded conditions (Fig. 2A). Nonetheless, a similar crown width ratio between the two conifers (Fig. 2B) suggests that branch elongation of *Abies* was not decreased as much as was growth in trunk height relative to *Picea*. High trunk diameter growth of *Abies* should be related to the branch elongation for mechanical crown support. Moreover, the crown projection area per trunk basal area of *Abies* was higher than that of *Picea* (ANOVA, $F_{1,164} = 9.66$, $P < 0.01$; Fig. 3). These suggest that branch elongation per trunk diameter increment is higher in *Abies* than in *Picea*.

No significant correlation was detected at the 0.05 level of probability between trunk height and tree age ($R = 0.146$ for *Abies*, $R = 0.249$ for *Picea*) and between trunk height and crowding index W ($R = 0.124$ for *Abies*, $R = 0.068$ for *Picea*). The age of understory trees of the two conifers, however, increased with the crowding index W (Fig. 4). These suggest that trees in locally crowded conditions could hardly enter into and come out of the examined height class of 5–10 m. The age of the lowest branch of *Picea* was in proportion to tree age, while *Abies* had an upper age of the lowest branch around 30 years for aged individuals (Fig. 5).
The two conifers showed different ways to maintain the branch system with aging in crowded conditions. *Picea* conserves old branches, while *Abies* replaces old branches with new ones at a high turnover rate. The relationship between tree age and branch age was in accordance with the W-CDR relationship in Fig. 2A. The age structure of branches within a tree is primarily a consequence of growth and self-pruning, which in turn is determined by environments. There was no significant difference in the frequency distribution of crowding index *W* between the two conifers sampled as target trees (Kolmogorov-Smirnov test, *P* > 0.05, data not shown). This suggests that the two conifers adapt to crowding in different ways.

DISCUSSION

Both *Abies sachalinensis* and *Picea glehnii* showed plastic responses in growth rate among dimensions and in crown architecture. *Abies* grew more in trunk height in less crowded conditions, but produced greater trunk diameter and branches in crowded conditions as compared to *Picea*. Hara, Kimura and Kikuzawa (1991) reported that suppressed trees of *Abies mariesii* Mast. and *A. veitchii* Lindl. grew more in trunk diameter than in trunk height, while those of the early successional species *Betula ermanii* showed the reverse trend. They considered that the growth in diameter of suppressed *Abies* spp. should be related to crown development, because trunk diameter is roughly proportional to the leaf mass of individual trees (Shinozaki et al., 1964a, b). Thus, the high plasticity in growth rate among the different dimensions enables *Abies sachalinensis* both to gain height efficiently in less crowded conditions, i.e. lower biomass increment required per unit height growth, and to invest for crown development in crowded conditions. As a result, *Abies* showed high plasticity in crown forms, i.e. crowns became more flat-shaped with a constant crown projected area.

A flat-shaped crown has long been appreciated as an adaptive form to crowding or shading (Horn, 1971; Küppers, 1989). Saplings suffer shading not only from neighbouring trees, but also from their own leaves. The gross photosynthesis per unit leaf area within a crown is greatest in the top of the crown, and decreases with depth (Kurachi, Hagiwara and Hozumi, 1986). Expanding horizontal systems resulting in a flat crown is an adaptive choice to avoid self-shading within the same individual crown (Kohyama, 1980, 1987). Thus, the flat-shaped *Abies* adapts to efficient canopy carbon gain. This crown shape of *Abies* was, however, rather wasteful, i.e. the recruitment of upper branches and self-pruning of lower branches at high rates. On the contrary, *Picea* conserves branches present thus resulting in a low turnover rate, which compensates for low growth rate of branches in crowded conditions. The reason there was an upper age of the longest branch for *Abies* could not be adequately clarified in this study, probably due to mechanical constraints (Chazdon, 1986).

At the level of an individual leaf, acclimation to shade has been explained in terms of leaf longevity and specific leaf area: plants grown under suppressed conditions generally have thinner leaves (Young and Smith, 1980; Ellsworth and Reich, 1993) and leaves with longer lifespan (Shukla and Ramakrishnan, 1984; Kikuzawa, 1988). The leaf longevity of *Abies sachalinensis* is about 10 years and that of *Picea glehnii* is 13 years (Fujimoto and Shimada, 1991). The ratio of current-year leaf mass to total leaf mass for *Abies sachalinensis* is 9.4–25.9% (average 16.7%), and that for *Picea glehnii* is 41–190% (9.7) (Shidei, 1960). This study shows that the same is true for branches that are main components of crown architecture beside leaves, i.e. higher turnover rate of branches was coupled with that of leaves for *Abies* and vice versa for *Picea*. The turnover rate of leaves is not independent of that of branches, since new leaves are recruited with shoot growth. Thus, one can recognize two different growth fashions between the two conifers: *Abies* can be regarded as an "optimistic" growth type and *Picea* as a "pessimistic" growth type (sensu Kohyama, 1987). *Abies* grows to maximize height growth in less crowded conditions and to enhance crown development with short-lived branches in crowded conditions at the expense of construction cost of new branches. In contrast, *Picea* reduces growth rates in all dimensions with conservation of the branches present in crowded conditions.

A choice between high growth rate of branches with high turnover rate (optimistic type) and low growth rate of branches with low turnover rate (pessimistic type) may be related to the intrinsic tree longevity. *Abies* is a considerably shorter-lived species than *Picea*. Longevity of *Abies sachalinensis* is approx. 100–200 years, while that of *Picea glehnii* is 400–500 years (Suzuki et al., 1987). Average tree ages of canopy trees taller than 10 m in this study site were 94.7 years for *Abies sachalinensis* and 260.5 years for *Picea glehnii* (Hiura, Sano and Konno, 1992). Average ages of the target trees of 5–10 m tall were 81.7 years (±25.1) and 127.3 years (±42.9) for *Abies* and *Picea*, respectively. This age of understorey trees for *Abies* is closer to the tree age of trees in the forest canopy than that for *Picea*. Thus, it is more significant for *Abies* to grow in height than to lose present branches even in crowded conditions because of its short longevity. On the other hand, long-lived *Picea* can afford to wait with little growth until a canopy gap is created, and so avoids the exceeding construction cost. It is concluded that local variation and unpredictability of gap turnover within a forest enable these two contrasting growth/architecture strategies to co-occur.

ACKNOWLEDGEMENTS

I wish to thank Prof. T. Kohyama for reading my earlier drafts and making a number of helpful suggestions. Dr T. Hara gave valuable comments on the draft. I also thank members of Laboratory of Environmental Botany, Obihiro University of Agriculture and Veterinary Medicine for supporting the collection of data. Financial support was partially provided by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

LITERATURE CITED
