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9 Histone Methyltransferase G9a Promotes Lung Cancer
sion and Metastasis by Silencing the Cell

R

esion Molecule Ep-CAM
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is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppres-
es. Emerging evidence suggests that G9a is required to maintain the malignant phenotype, but the role of
nction in mediating tumor metastasis has not been explored. Here, we show that G9a is expressed in
sive lung cancer cells, and its elevated expression correlates with poor prognosis. RNAi-mediated knock-
of G9a in highly invasive lung cancer cells inhibited cell migration and invasion in vitro and metastasis
. Conversely, ectopic G9a expression in weakly invasive lung cancer cells increased motility and metas-
echanistic investigations suggested that repression of the cell adhesion molecule Ep-CAM mediated the
of G9a. First, RNAi-mediated knockdown of Ep-CAM partially relieved metastasis suppression imposed
a suppression. Second, an inverse correlation between G9a and Ep-CAM expression existed in primary
ancer. Third, Ep-CAM repression was associated with promoter methylation and an enrichment for
hylated histone H3K9. G9a knockdown reduced the levels of H3K9 dimethylation and decreased the
tment of the transcriptional cofactors HP1, DNMT1, and HDAC1 to the Ep-CAM promoter. Our findings
-pdf/70/20
recrui
establish a functional contribution of G9a overexpression with concomitant dysregulation of epigenetic path-
ways in lung cancer progression. Cancer Res; 70(20); 7830–40. ©2010 AACR.
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rrant DNA methylation is the primary epigenetic mech-
for regulating gene expression in human cancers (1, 2).
s have shown that these DNA methylation
ed with the presence of an aberrant pattern
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one modification (3–7). This histone code (e.g., acetyla-
ethylation, phosphorylation, ubiquitinylation, and su-
tion), alone or together with DNA methylation, has a
l role in organizing nuclear architecture, which, in turn,
olved in regulating transcription. For example, DNA
lation is typically associated with heterochromatin
anscriptionally repressed euchromatic regions (8, 9).
t evidence suggests that H3K9 methylation and silenc-
the p16ink4a tumor suppressor gene can occur before
ethylation (10). Aberrant silencing of tumor suppressor
DSC3 and MASPIN in breast epithelial tumor cells has
previously linked to DNA methylation and H3K9 di-
lation of their promoters (11). It has been reported that
es in global levels of individual histonemodifications are
ndently predictive of the clinical outcome of prostate
r, gastric adenocarcinomas, as well as breast, ovarian,
ncreatic cancers (12–14). These results support the hy-
sis that aberrant histone modification patterns are crit-
involved in the tumorigenic process.
is a recently identified Su(var), Enhancer of Zeste,
rax (SET) domain–containing protein with histone ly-
ethyltransferase activity (15). G9a is a euchromatin-
ed histone methyltransferase (HMT) and catalyzes
ethylation of histone H3 at lysines 9 and 27 (H3K9

27; ref. 16). Targeted deletion of G9a in knockout
revealed that G9a is predominantly responsible for
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hylation of H3K9 (H3K9me2; ref. 17). G9a plays an im-
t role in the silencing and subsequent de novo DNA
lation of embryonic and germ-line genes during nor-
evelopment (8) and is necessary for the maintenance
DNA methylation profile of mammalian cells (9).
role of HMTs in promoting tumorigenesis and the
ssion of human cancers has begun to emerge. Highly
sed EZH2 has been observed in metastatic prostate
r, lymphomas, and aggressive breast cancer (18).
is upregulated in some colon, breast, and liver cancers
9a and EZH2 are also upregulated in hepatocellular
oma (20). The suppression of either G9a and SUV39H1
d cell proliferation and anchorage-independent colony
while inducing apoptosis in immortalized normal hu-
ronchial epithelial cells (21). Knockdown of G9a and
H1 in PC3 prostate cancer cells inhibited cell growth
d to morphologically senescent cells with telomere ab-
lities (22). These studies indicate that G9a seems to be
ed for the maintenance of the malignant phenotype.
ue invasion and metastasis are the major causes of
r-related death (23). Some studies have found that
specifically affect metastasis. EZH2 is linked to cell
ration and invasion in prostate cancer and breast
(18, 24) and significantly associated with distant me-

es in gastric cancer (25). A recent study further estab-
a causal role for EZH2 in driving metastasis in

te cancer (26). The functional roles of other members
HMT family such as G9a in cancer remain obscure.

fore, we investigated whether G9a might also function
gulator of metastasis. In this report, we explore wheth-
a represents a new metastasis promoter within the
family. We then define the mechanism by which G9a
tes metastatic lung cancer and show that epigenetic
ssion of downstream Ep-CAM is an important mech-
by which G9a triggers metastasis. Furthermore, ele-

levels of G9a correlate with poor prognosis and may Cells
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an independent prognostic factor.

rials and Methods

mens and immunohistochemistry
tissues used were from the Cancer Tissue Core of the
al Taiwan University Hospital. None of the patients had
ed preoperative neoadjuvant chemotherapy or radia-
erapy. The surgical specimens had been fixed in forma-
embedded in paraffin before they were archived. We

he archived specimens for immunohistochemical stain-
he histologic diagnosis of lung adenocarcinoma was
according to the recommendations of WHO. Tumor
cal invasion, lymph node metastasis, and final disease
were determined as described previously (27). Follow-
patients was carried out up to 200 months. Patients
ied of postoperative complications within 30 days after
y were excluded from the survival analysis.
ur-point staining intensity scoring system was devised

ermining the relative expression of G9a in cancer speci-
the staining intensity score ranged from 0 (no expres-

femal
metas

acrjournals.org
to 3 (maximal expression). The results were classified
o groups according to the intensity and extent of stain-
the low-expression group, either no staining was pres-
taining intensity score = 0) or positive staining was
ed in less than 10% of the cells (staining intensity score =
in the high-expression group, positive immunostain-
s present in 10% to 30% (staining intensity score = 2) or
than 30% of the cells (staining intensity score = 3). All of
munohistochemical staining results were reviewed and
independently by two pathologists.
antibodies included anti-human Ep-CAM (Cell Signal-
chnology) and anti-G9a (R&D Systems, Perseus Proteo-
. Immunodetection was performed with an EnVision
nk system-HRP detection kit (DAKO Corporation).

ulture
g cancer cell lines were grown in RPMI 1640 plus 10%
ovine serum (Invitrogen/Gibco) in a humidified atmo-
containing 5% CO2 at 37°C. Lung adenocarcinoma cell

(CL1-0 and CL1-5) were established in the National
Research Institutes laboratory and displayed progres-

increasing invasiveness (28). Other lung cancer cell lines
, H441, and H1299) were obtained from the American
ulture Collection.

iral infections
lentiviral G9a shRNA constructs were purchased from

ational RNAi Core Facility in Academic Sinica, Taipei,
n. The Ep-CAM shRNA constructs were obtained from
Biosystems. The target sequences of these shRNA are
bed in Supplementary Table S1. Lentiviruses were pro-
by cotransfecting shRNA-expressing vector and pMD2.
psPAX2 constructs into 293T cells by using calcium
hate. Viral supernatants were harvested, titered, and
o infect CL1-5 or H1299 cells with 8 μg/mL polybrene.
were selected using 2 μg/mL puromycin. Luciferase-
sing cells (CL1-0/Luc or CL1-5/Luc) were established
ecting with lentivirus-expressing pWPI-Luc-ires-GFP
. CL1-0/HA-G9a cells were established by infecting
entivirus-expressing pWPXL-HA-G9a vector.

ion and migration assays
asion and migration assays were performed as pub-
(ref. 30; see Supplementary Data).

rn blot analysis
stern blot analysis was performed with the primary anti-
anti-G9a, anti-H3K9me2 (Upstate), anti–Ep-CAM (Cell
ing Technology), and anti–α-tubulin (Sigma-Aldrich).

al studies
animal works were done in accordance with a protocol
ved by the National Taiwan University College of Med-
nd National Taiwan University College of Public Health
tional animal care and use committees. Age-matched
ese diabetic severe combined immunodeficient (SCID)

e mice (6–8 weeks old) were used. For experimental
tasis assays, 1 × 106 cells were resuspended in 0.1 mL

Cancer Res; 70(20) October 15, 2010 7831
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and injected into the lateral tail vein. Lung metastatic
ssion was monitored and quantified using the noninva-
oluminescence system (IVIS-Spectrum). For orthotopic
tasis assays, cells (1 × 106 CL1-0 cells, 5 × 105 CL1-5 cells)
esuspended in a 1:1 mixture of PBS and GFR-Matrigel
bware). This mixture was then injected into the left lat-
orax of each mouse as previously described (29). Meta-
nodules in the right lung were quantified using a
ting microscope at each end point.

rase reporter assay
Ep-CAM promoter (−250 to +90) was used as described
he Dual Luciferase Reporter assay system (Promega)
ed with TK-Renilla luciferase plasmid as a transfection
ncy normalization control.

atin immunoprecipitation assay
omatin immunoprecipitation (ChIP) assays were per-
d according to the manufacturer's protocol (Upstate).
romatins were incubated with 4 μg of anti-K9 dimethy-
histone H3, anti–acetylated histone H3, anti-G9a (Up-
, anti-DNMT1, anti-Sp1, anti-HDAC1, and anti-P300
dy (Santa Cruz Biotechnology) at 4°C overnight. Immu-
cipitated DNA was analyzed by quantitative PCR by us-
ecific primers as described in Supplementary Table S2.

lation-specific PCR and bisulfite sequencing
was treated with bisulfite and purified for PCR as de-

d previously (31). Primer sequences were as described in
mentary Table S2. The sequences of the Ep-CAM pro-
primers were 5-AAGGAAGTTTTAGTATAGAATTTT-
TT-3 (F) and 5-AAAAAAATAAATAAACTCCCCTCC-3
e PCR products were ligated into pGEM-T vector (Pro-
and transformed into DH5α. Plasmid DNAwas isolated
en subjected to sequence analysis.

athologic analysis
ues were processed by fixing in 4% buffered formalin
en embedding in paraffin wax. Sections (3 μm) were
d with H&E for histopathologic analysis.

tical analysis
observations were confirmed by at least three indepen-
xperiments. The data were presented as mean ± SD.
A was used to evaluate the statistical significance of
ean values. Cox proportional hazards regression was
o test the prognostic significance of factors in univar-
d multivariate models. Spearman's rank correlations
determined for comparison of G9a and Ep-CAM
nostaining. All statistical tests were two-sided, and
5 was considered significant.

lts

xpression in lung cancer is associated with
prognosis

parisons of the expression levels of G9a in tumor tissues
ntrol normal tissues were made. Immunohistochemical

To d
and in

r Res; 70(20) October 15, 2010
nation of 32 paired lung adenocarcinoma specimens
ed a significantly higher expression of G9a in tumor
s (P < 0.0001; Supplementary Fig. S1). Similar results
also observed from the analysis of 22 paired lung
ous cell carcinoma specimens (P < 0.0001; Supple-
ry Fig. S1). Collectively, G9a was expressed at a lower
n normal lung tissues and preferentially expressed in
umor tissues.
prognostic significance of G9a expression was deter-
by assessing its nuclear staining using 160 human
ancer specimens with known clinical follow-up re-
Figure 1A shows representative examples with dif-
G9a scores. The relationships between the levels of
xpression and the clinicopathologic characteristics of
ancer are summarized in Supplementary Table S3.
g these specimens, we found that high G9a expres-
evel (scores of 2 and 3) correlated strongly with re-
overall survival relative to tumors with low G9a
sion level (scores of 0 and 1) as shown in Fig. 1B.
r results were obtained for disease-free interval
C). The prognostic significance of G9a was also per-
d by using tissue microarray (TMA) containing 119
from an independent lung cancer patient cohort.
r results were observed (Supplementary Fig. S2A;
mentary Table S4). In a multivariate Cox model in-
g G9a score, histology type, tumor stage, tumor sta-
mph node involvement, and metastasis, G9a levels
etastasis were found to be significant predictors of
me (Table 1; Supplementary Fig. S2B). Taken toge-
our data indicate that higher levels of G9a predict
prognosis in lung cancer.

xpression enhances the invasive ability of
cancer cells
elucidate a link between G9a expression and tumor
vasiveness, we used a set of lung adenocarcinoma cell
CL1-0 and CL1-5) that were designed to exhibit pro-
ve invasiveness abilities as previously described (28).
rn blot analysis showed that G9a protein levels were
cantly elevated in the highly invasive CL1-5 lung can-
lls as compared with the poorly invasive parental
cells (Fig. 2A, left). Next, we asked whether a corre-
between G9a expression and tumor cell invasiveness
ed in other cell lines. We observed abundant G9a ex-
on in the highly invasive H1299 lung cancer cell line,
w G9a expression in poorly invasive lung cancer cell
(PC14 and H441; Fig. 2A, right). G9a and GLP have
described to form a homomeric or heteromeric com-
hrough their SET domain interaction, both of which
ucial for H3K9 methylation of euchromatin (32). We
xamined GLP expression and global H3K9me2 in
lung cancer cell lines. Our results showed similar
of GLP expression in all cell lines tested but different
of G9a expression (Fig. 2A). Global H3K9me2 status
ot completely correlated with G9a expression in lung
r cell lines (Fig. 2A).

etermine whether G9a modulates tumor cell migration
vasion, we knocked down G9a in CL1-5 and H1299 cells

Cancer Research
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G9a-specific shRNAs. We initially determined the influ-
f G9a knockdown on cell proliferation, apoptosis, and
cence as previously described (21, 22). Our results
d that G9a-knockdown cells exhibited no significant

d by G9a level.
nces in proliferation, cell cycle, and senescence profiles
pared with controls (Supplementary Fig. S3A–D).

ry Fig
cells w

le

am Comp

sc Low (s
olo Adeno
ol pT1–p

o-sided Cox proportional hazards regression using normal approximat

acrjournals.org
restingly, expression of two G9a-specific shRNAs sig-
ntly reduced the mRNA and protein levels of G9a
oncomitant inhibition of the migration and invasion
tials of CL1-5 and H1299 cells (Fig. 2B; Supplementa-
1. G9a is expressed in tumors and is correlated with poor prognosis. A, G9a levels in representative lung tumor tissues. B, Kaplan-Meier plot of
. S4). Overexpression of G9a in poorly invasive CL1-0
as also found to enhance the migratory and invasive
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1. Relative multivariate analysis of potential prognostic variables
 24
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eters
Multivariate analysis

arison
 95% CI)
ore
 core 0, 1); high (score 2, 3)
 .44–3.38)
 *

gy type
 carcinoma; nonadenocarcinoma
 .48–1.16)

ogic stage
 T2; pT3–pT4
 .80–2.63)

status
 ; T3–T4
 .30–1.20)
or T1–T2 0.60 (0 0.152

ph node status NO; N1–N3 2.49 (1.52–4.06) 0.0003
astasis MO; M1 2.37 (1.14–4.92) 0.022

E: Cox proportional hazards regression was used to test the independent prognostic contribution of G9a after accounting for
r potentially important covariates.
reviations: HR, hazard ratio; CI, confidence interval.
010 7833
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s of CL1-0 cells (Fig. 2B, right). G9a knockdown in
cells with lower endogenous G9a expression was also
to significantly inhibit their migration abilities (Sup-
ntary Fig. S5). Taken together, these results indicate
9a regulates the migration and invasion of lung
cells.

determine whether the enzymatic activity of G9a was

ed for its effect in promoting cancer cell motility and
on, CL1-5 and H1299 cells were transfected with a

tivity
notyp

r Res; 70(20) October 15, 2010
ant-negative mutant of G9a (DN-G9a) containing
mino acid substitutions within the catalytic domain
H and L904E), which abolishes methyltransferase ac-
(33, 34). Figure 2C shows that DN-G9a transfection
cantly reduced H3K9me2 level in CL1-5 and H1299
nd inhibited their migratory and invasive abilities.
e basis of these results, we suggest that the HMT ac-

of G9a is required for the migratory and invasive phe-
e of lung cancer cells.

ure
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(middle) cells expressing
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xpression promotes metastasis in vivo
evaluate the role of G9a during metastasis, we used
perimental metastasis model in which cancer cells
i.v. injected into the lateral tail veins of mice. As
in Fig. 3A, we stably knocked down G9a in CL1-
cells, which stably expressed luciferase, and im-

L1-0/HA-G9a cancer cells invade into the center of the lymph node (rig
d these cells i.v. into SCID mice (Fig. 3A). Four
after injection, the lung was removed and metasta-

was d
tumor

acrjournals.org
as monitored by bioluminescence imaging. G9a
down resulted in less detectable lung metastases
red with controls (Fig. 3A, right). Quantification of
etastatic nodules present using dissecting microscopy
istologic analyses of the lung dissected from each
e confirmed that the number of lung metastases

×) as compared with the normal lymph node (left; 200×).
3. G9a expression promotes metastasis in vivo. A, top, expression of G9a protein was examined by immunoblotting in CL1-5 cells stably
ing control shRNA or G9a shRNA2. Bottom, representative lung images of mice injected with control and G9a shRNA2–expressing cells. The
ar represents luciferase intensity. B, left, representative H&E staining of lung sections. Black arrow, a metastatic nodule. Right, total numbers of
etastatic nodules in individual mice 4 wk after tail vein injection of CL1-5 cells transfected with control shRNA or G9a shRNA2. C, top,
ntative H&E staining of left and right lung sections. Black arrowhead, the original CL1-0/HA-G9a tumor established in the left lung. Black arrow on
t lung shows an intrapulmonary metastatic tumor nodule. Bottom, total numbers of lung metastatic nodules in individual mice 4 wk after left
rastically reduced in mice carrying G9a-knockdown
s (Fig. 3B).

Cancer Res; 70(20) October 15, 2010 7835
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next investigated whether ectopic expression of G9a
ficient to induce invasive activity in low-metastatic
cells using an orthotopic lung cancer model as de-

d (29). Low-metastatic CL1-0 cells stably expressing
ere orthotopically injected into the upper lobe of left
tumor growth and metastasis were monitored and
ified by bioluminescence imaging. Tumor metastasis
he right lung was increased in the G9a-overexpres-
roup (Supplementary Fig. S6A). Quantification of
tatic nodules confirmed that right lung metastasis
ignificantly increased in mice carrying CL1-0/HA-
mors (Fig. 3C). Overexpression of G9a did not alter
tumor growth rate (Supplementary Fig. S6B). Fur-

ore, G9a-overexpressing CL1-0 cells were found to
into mediastinal lymph nodes (Fig. 3D). Hence,
unction is essential and sufficient to promote lung
metastasis.

levels
induce

nd/or Ep-CAM–knockdown CL1-5 cells. Bottom, total numbers of right lung met
and/or Ep-CAM–knockdown CL1-5 cells.

r Res; 70(20) October 15, 2010
M is a direct and functional target in
nduced migration and invasion
roarray RNA expression profiles were compared be-
CL1-5 cells with control shRNA and G9a shRNA2

ntify invasion/migration-related genes directly regulat-
G9a. Reverse transcription-PCR analysis was used to
r validate the expression levels of these genes (Supple-
ry Fig. S7A). Our results showed that the mRNA levels
adherin and Ep-CAM were significantly upregulated in
nockdown cells compared with control (Supplementa-
. S7A). E-cadherin and Ep-CAM protein levels were
etermined in G9a-knockdown CL1-5 and H1299 cells.
nockdown significantly increased Ep-CAM protein lev-
CL1-5 (7.5- and 16-fold) and H1299 cells (2.4- and
d; Fig. 4A), whereas endogenous E-cadherin protein

were extremely low in both cell lines. G9a knockdown
d low level of E-cadherin expression in CL1-5 but not

ded from
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4. Ep-CAM is a direct and functional target in G9a-induced migration and invasion. A, Western blot analysis of Ep-CAM, E-cadherin, and G9a
expression in G9a-knockdown CL1-5 (left) and H1299 (right) cells. B, immunohistochemical staining analysis of G9a and Ep-CAM proteins in serial
s. Note inverse correlation of G9a and Ep-CAM protein expression in tumor cells. C, top, Western blot analysis of G9a and Ep-CAM expression
Bottom, invasive ability of each cell line after G9a and/or Ep-CAM knockdown. D, top, representative luciferase images of mouse lung injected with
astatic nodules in individual mice 4 wk after orthotopic injection
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299 cells (Fig. 4A). Microarray RNA expression profiles
lso determined in G9a-overexpressing CL1-0 cells and
control. The results showed inverse correlation of RNA
sion with G9a knockdown (Supplementary Fig. S7A).
rn blot analysis further confirmed that ectopic over-
ssion of G9a induced a more than 2-fold reduction
-CAM protein level in CL1-0 cells (Supplementary
B).
next investigated whether G9a expression inversely cor-
with Ep-CAM levels in human lung cancer patients.

nohistochemistry analysis of lung cancer specimens
ed an inverse correlation between G9a and Ep-CAM ex-
on (tested by Spearman's nonparametric correlation
orrelation coefficient = −0.4, P < 0.05; Supplementary
S5). The representative immunohistochemical staining
-CAM and G9a on serial sections revealed inverse stain-
tterns in lung adenocarcinoma tissues (Fig. 4B). To ex-
he inverse correlation between G9a and Ep-CAM in
n lung cancer, we further determined Ep-CAM levels
ial lung cancer TMA set in which G9a was examined.
esults also revealed an inverse correlation between
d Ep-CAM expression (tested by Spearman's nonpara-
correlation test, correlation coefficient = −0.189, P <
upplementary Fig. S8A). The correlation of high G9a
sion with low Ep-CAM expression in human lung can-
tients is consistent with our finding that knockdown of
n upregulate Ep-CAM in lung cancer cells.
se observations led us to examine whether Ep-CAM
reverse G9a-mediated phenotypes. As shown in
and Supplementary Fig. S9, infection and expression
shRNAs significantly reduced the levels of Ep-CAM
and protein with concomitant increase in the inva-

bility in vitro of CL1-5 cells that were prior infected
9a shRNA compared with control (Fig. 4C). To inves-
whether Ep-CAM knockdown could reverse the
metastatic phenotypes attributed to G9a functions,
hotopically injected mice with CL1-5 cells expressing
nations of G9a shRNA, Ep-CAM shRNA, and control
. G9a knockdown showed more than 70% reductions
l luciferase counts (P < 0.05) in orthotopic tumors (Sup-
ntary Fig. S10). Ep-CAM shRNA, however, could abate
ry tumor growth reduction in the presence of G9a
(Supplementary Fig. S10). Ep-CAM knockdown was
to restore lung metastasis in G9a shRNA2–expressing
cells to 77% of control levels in orthotopic left to right
etastasis assay (Figs. 3C and 4D). Taken together, these
dicate that the ability of G9a shRNA to inhibit metas-
s attributable, in significant part, to its capacity to up-
te Ep-CAM.

duces the assembly of a repressor complex at the
M promoter
further characterize the mechanism of G9a-mediated
egulation of Ep-CAM expression, we next examined
inding and H3K9 dimethylation at different regions
human Ep-CAM gene by using ChIP analysis with anti-

against G9a and dimethyl-H3K9 (H3K9me2). Four

entative regions spanning ∼2.5 kb upstream of the
G9a su
both H

acrjournals.org
ription initiation site of the Ep-CAM gene were inves-
d (Fig. 5A, top). The results showed that G9a and
e2 were found in region P3 only in CL1-5 cells (Fig.

his region also contains a consensus binding site for
transcription factor that has been reported to regulate
M transcription activity (35). To delineate the role of
G9a knockdown–mediated Ep-CAM transactivation,
nsfected CL1-5 cells with shRNAs against Sp1 that
een previously infected with either Luc or G9a shRNA.
5B shows that G9a knockdown resulted in a signifi-

nduction of the Ep-CAM promoter (−250/+90) lucifer-
tivity (lane 2 versus lane 4), which was diminished in
esence of mithramycin A (a steric inhibitor that pre-
Sp1 binding to DNA) or Sp1 shRNA, but not in the
ce of P50 shRNA (lanes 4–9; Fig. 5B). These results
t that G9a-regulated Ep-CAM gene transactivation is
dent on an endogenous Sp1 transcription factor.
elucidate the assembly of the repressor protein com-
hat binds to the Ep-CAM promoter, we performed
assay of the Ep-CAM promoter in G9a-knockdown
cells and control. As expected, loss of G9a resulted
s of H3K9me2, HP1, DNMT1, and HDAC1 binding at
P3 compared with SP1 (Fig. 5C). Methylation-specific
MS-PCR) and bisulfite sequencing were further per-
d to evaluate whether G9a-knockdown is responsible
G demethylation of the Ep-CAM promoter. As shown
. 5D, a clear unmethylated band of the Ep-CAM pro-
was observed in G9a shRNA2–expressing CL1-5 cells
S-PCR analysis (Fig. 5D, top). Bisulfite sequencing
s confirmed that G9a knockdown significantly re-
Ep-CAM promoter methylation (Fig. 5D, bottom
These results indicate that both DNA and histone
lation, along with repressive complexes, mediate
M gene repression.

ssion

T can act as a driver of metastasis (26). Here, we pro-
or the first time that G9a acts as a promoter of metas-
n the context of lung cancer. G9a is a major HMT that
ains global H3K9me2. Several studies have shown that
global levels of H3K9me2 predict poor prognosis in
te and kidney cancers (36, 37). Therefore, we analyzed
rrelation between G9a and H3K9me2 level in human
ancer TMA. We did not observe any significant corre-
of G9a expression and global H3K9me2 level (Supple-
ry Fig. S12A). Global levels of H3K9me2 also did not
t prognosis in lung cancer (Supplementary Fig. S12B).
so found that global H3K9me2 level was not correlated
9a expression in lung cancer cell lines (Fig. 2A). Global
e2 is dynamic, and it changes as a result of the effects
LP, and H3K9 demethylases, such as JMJD2A (38),
C (39), and LSD1 (40), but the complex interplay of
enzymes is poorly understood. Based on our studies,
vel is a more rigorous marker for cell invasion and
osis factor in lung cancer. This may be due to the

ppression of transcription by independently inducing
3K9 and DNA methylation (41).
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reported that G9a and GLP form a stoichiometric het-
ric complex in vivo and function cooperatively rather
edundantly to mediate H3K9 dimethylation at euchro-
(32, 42). Their interaction also stabilizes G9a protein
egradation. We tested the possibility that downregula-
f GLP results in a similar phenotype as that observed

ummethylated CG. The methylation rate in each region (as a percentage)
ownregulation of G9a. We found that knockdown of
sulted in migration defect, as in the case of knockdown

G9a. T
motio

r Res; 70(20) October 15, 2010
(Supplementary Fig. S11). Similar to the result of a pre-
report (17), GLP depletion also caused G9a protein de-
n (Supplementary Fig. S13). Depletion of each protein
fect the function of the G9a-GLP complex. Collectively,
sults indicate that downregulation of GLP results in a
r phenotype as that observed with downregulation of

ated.
5. G9a induces the assembly of a repressor complex on the Ep-CAM promoter. A, top, schematic diagram of the human Ep-CAM promoter
nk accession no. AY148099). Arrow with numbers indicates the primer sets that were used for the ChIP analysis. Bottom, binding of G9a and
e2 to the Ep-CAM promoter was determined by ChIP assay in CL1-5 and CL1-0 cells. B, G9a knockdown–mediated Ep-CAM gene transactivation
s Sp1. The fold increase in activation is shown above the bars, along with the plasmids transfected. C, ChIP analysis of the association of
regulatory factors with the Ep-CAM promoter region in CL1-5/Luc shRNA and CL1-5/G9a shRNA cells. D, top, changes in the DNA methylation
f the Ep-CAM promoter in CL1-5/Luc shRNA and G9a shRNA2 cells, as determined by MS-PCR. M, methylated DNA; U, unmethylated DNA.
he results also suggest that GLP is essential in the pro-
n of cell migration by G9a.
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his study, we have provided substantial evidence linking
xpression with lung cancer progression; however, the
le mechanisms of G9a overexpression associated with
ancer metastasis remain elusive. Our preliminary data
t that posttranslational regulation mechanisms may be
ed. We have found that G9a expression is higher in lung
tissues compared with matched normal tissues (Sup-
ntary Fig. S1). Local invasion is one of the early events
mor metastasis. We have provided evidence to show
pression of G9a increases cell invasion (Fig. 2B). Taken
er, increased expression of G9a may occur as an early
in metastasis processes. Other possibilities may also ex-
cannot be ruled out at this moment. Recently, cancer
ell is believed to act like a seed to metastasize at distant
on entry into circulation. Indeed, we also found that
pression was higher in colon cancer stem cells (sorting
t multiple colon stem cell markers such as CD133 and
, although this was not observed in our lung cancer cell
s. Therefore, it is possible that high G9a expressing cells
ontain more cancer stem cell potentials with higher ca-
y for metastasis. Currently, the association between
xpression and cancer stem cells is under investigation
laboratory.
results showed that knockdown of Ep-CAM partially
ed metastasis suppression due to G9a knockdown
. Furthermore, we showed that patients with high ex-
on of G9a and with concomitantly low Ep-CAM levels
gnificantly shorter survival time in lung cancer TMA
lementary Fig. S8B). These findings are quite interest-
d warrant further investigation because Ep-CAM is
ne member of a large cohort of metastasis-relevant
that may be repressed by G9a. Ep-CAM is a 40-kDa

lial transmembrane glycoprotein that is abundantly
t in most epithelial tissues and functions as a homo-
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Ca2+-independent cell-cell adhesion molecule (43).
of membranous Ep-CAM is associated with nuclear
nin localization and contributes to reduced cell-cell
ions, increased migratory potential, and tumor bud-
44). Nuclear translocation of β-catenin may cause ac-
n of genes that are regulated by β-catenin. These
s may partially explain why Ep-CAM induces the re-
of G9a-mediated phenotypes. This supports the hy-
sis that G9a may act via the pleiotropic regulation
ltiple effectors.
onclusions, we show that G9a is endowed with methyl-
erase activity to concomitantly repress the downstream
r Ep-CAM, thereby promoting the invasion step of the
on-metastasis cascade. Moreover, G9a levels correlate
educed overall survival and disease-free interval, poten-
epresenting an independent prognostic factor.
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