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The authors presented an interesting consideration of an
symmetric frictionless contact problem with the aid of mathem
cal software MATHEMATICA. Evidently, the use of modern an
lytical software gives a possibility to obtain new results, che
known solutions, and correct possible misprints. However, so
papers in the field should be added to their reference list.

In 1939 an analytical solution for a punch described by a m
nomial function ofr of a positive even degreea was obtained by
Shtaerman@1#. It is worth mentioning that after A. E. H. Love ha
obtained his solution, the problem for conical punch was a
solved by Lur’e@2# in 1941. The problem for a punch describe
by a monomial function ofr of an arbitrary real degreea was
solved by Galin~see Chap. 2, paragraph 5 in Ref.@3#!. Then this
problem was also analyzed by Sneddon@4#. In 1957 the problem
was analyzed by Segedin@5# for a punch whose shape is repr
sented by a series~a polynomial function ofr! with integer de-
greesa. For a punch described by a fractional power series or,
the problem was analyzed in Ref.@6#. The analysis in Ref.@6# was
based on the Galin’s solution~@3#!. It was shown that the solution
can be also used in the case when the punch is a transver
isotropic solid and the half space has homogeneous initial stre
In particular, a formula similar to formula~17! was obtained.
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Our work ~@1#! was based on Green’s solution~@2#!. We thank
the discussors for pointing out a different approach taken by Bo
rodich @3# following the work of Galin@4#. At the time of publi-
cation, we were unaware of the work by Borodich. The usage o
our derived solution is straightforward. With modern mathemati
cal software, hypergeometric function will be like a regular el-
ementary function and the final result is easy to be obtain. It ca
also be used to check analytical expressions for possible m
prints.

As it is pointed out in the paper, the power of the ‘‘polynomial’’
can be any non-negative number, such as 0, 2, 1/12,e, p. With
this solution, one can use multiple terms to define the punch sha
instead of a monomial function of the punch radius.

We appreciate the fact that there exist numerous contribution
to this field in the Russian literature, and our understanding of th
work is mainly based on the books by Gladwell@5# and Sneddon
@6#. Johnson@7# also mentioned the solutions by Shtaerman an
Galin in his book.
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The dynamic condensation method~@1#! was successfully ex
tended by Rao@2# to handle the unsymmetric systems with dam
ing. This method is very interesting and useful in the finite e
ment modeling, vibration control, etc. However, o
misunderstanding occurred when this approach was utilize
substructure synthesis.

As stated by the author in Sec. 4, the reduced order mat
@MR# and @KR# of each substructure in Eqs.~16! and ~17! have
the form

@MR#5F @0# @MmmR#

2@MmmR# 2@CmmR#
G , @KR#5F @MmmR# @0#

@0# @KmmR#
G

(1)

in which @MmmR#, @CmmR#, and @KmmR# are the reduced orde
mass, damping, and stiffness matrices of orderm3m.

Actually, if the reduced order matrices@MR# and@KR# are com-
puted from Eqs.~16! and ~17! as indicated by the author, the
two matrices are generally fully populated and do not have
forms shown in Eq.~1!. This will be explained in detail later
Hence one cannot simply convert these two matrices into the
placement space with the explicit forms of the reduced order
trices@MmmR#, @CmmR# and@KmmR#. If the matrices on the right
hand sides of Eq.~1! are known and those on the left-hand sid
are unknowns, the relations shown in this equation are right. H
ever, the problem is how we get the reduced matrices@MmmR#,
@CmmR#, and@KmmR# before we have@MR# and @KR#.

To simplify the discussion, consider a symmetric problem.
1Current address: 2409 Wynncrest Circle, 6205, Arlington, TX 76006.
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ter the simplification, the full order matrices@M̄ # and@K̄# in Ref.
@2# become

@M̄ #52F @0# @M #

@M # @C#
G , @K̄#5F2@M # @0#

@0# @K#
G , (2)

if the eigenproblem in Sec. 3 rather than the dynamic equations of
equilibrium in Sec. 2 is considered. The transformation matrices
@R# and@S# are the same and indicated by@R#. The corresponding
governing equation for the transformation matrix is given by

@R#5@K̄ss#
21@~@M̄ sm#1@M̄ ss#@R# !@MR#21@KR#2@K̄sm##

(3)

and the initial approximation is

@R#~0!52@K̄ss#
21@K̄sm#. (4)

A very simple numerical example is given to show the form of
reduced order matrices@MR# and@KR#. In this example, the mass,
damping, and stiffness matrices are

@M #5F 1 0 0

0 1 0

0 0 1
G , @C#5F 1 0 0

0 0 0

0 0 0
G ,

(5)

@K#5F 2 21 0

21 2 21

0 21 1
G .

Two cases that the first and the third degrees of freedom are,
respectively, selected as the master degrees of freedom are con-
sidered. The resulted reduced order matrices@MR# and@KR# from
the initial approximation and the first three iterations are listed in
Table 1. The results show that reduced order matrices@MR# and
@KR# obtained from the initial approximation, that is, Guyan con-
densation, have the forms given in Eq.~2!. This conclusion can be
proven simply. After two iterations, both reduced order matrices
are fully populated. The further discussion on the dynamic con-
densation of viscously damped, symmetric models may be found
in Refs.@3–6#.
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Table 1 Reduced order matrices †MR‡ and †K R‡ during iteration

Iteration

Case 1 Case 2

@MR# @KR# @MR# @KR#

0 0 21 21 0 0 21 21 0
21 21 0 1 21 20.1111 0 0.3333

1 0 23 23 0 0.2469 21.4815 21.4815 0
23 21 0 1 21.4815 20.1111 0 0.3333

2 23.3333 24.6667 22.4444 0.5556 0.1963 21.5716 21.5042 20.0311
24.6667 21 0.5556 1.5556 21.5716 20.1962 20.0311 0.3512

3 23.0183 25.1174 23.0159 0.6003 0.2750 21.6296 21.6196 20.04670
25.1174 20.6281 0.6003 1.6537 21.6296 20.2148 20.04670 0.3507
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I appreciate Zu-Qing Qu for the interest shown and for mak
useful comments on the contents of my paper.

The reduced order matricesMR andKR retain the same form a
given in Eq.~1! as the iterations progress. The computation res
presented by Zu-Qing Qu seem to be incorrect.

With the help of the procedure in Sec. 3 of my paper,
computations for the first three iterations are carried out on
numerical example cited by Zu-Qing Qu. The results of the
three iterations are given in Table 1 hereunder.

In addition to the above, the eigenvalues are also extracte
the full system and the two cases of master selection. The
verged eigenvalues are shown in Table 2 below.

Further to the above, I wish to add here that since the form
tion in my paper finally falls into the category of unsymmet
matrices—particularly so in the case of the mass matrix in
~2!—the assumption by Zu-Qing Qu that the transformation
trices @R# and @S# are the same even for a symmetric structur
not valid.
Copyright © 2Journal of Applied Mechanics
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Table 1 MR and K R for three iterations

Iteration

Case 1 Case 2

MR KR MR KR

0 0 1 1 0 0 1 1 0
21 21 0 1 21 0.1111 0 0.333

1 0 1 1 0 0 1 1 0
23.0 21 0 1 21.481 20.111 0 0.333

2 0 1 1 0 0 1 1 0
23.0 20.5165 0 1 21.50 20.167 0 0.333

3 0 1 1 0 0 1 1 0
24.1111 20.4444 0 1 21.572 20.161 0 0.333

10 0 1 1 0 0 1 1 0
24.765 20.516 0 1 21.588 20.172 0 0.333

Table 2 Eigenvalues

Mode
no. Full system Case 1 Case 2

1 20.05421J 0.4549 20.05071J 0.4553 20.054191J0.4549
2 20.05422J 0.4549 20.05072J 0.4553 20.054192j 0.4549
3 20.33361J 1.2374
4 20.33362J 1.2374
5 20.112251J 1.6996
6 20.112252J 1.6996
003 by ASME SEPTEMBER 2003, Vol. 70 Õ 785
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