Dietary, lifestyle, and clinical predictors of lipoprotein-associated phospholipase A₂ activity in individuals without coronary artery disease¹–³

Ida J Hatoum, Jeanenne J Nelson, Nancy R Cook, Frank B Hu, and Eric B Rimm

ABSTRACT
Background: Elevated lipoprotein-associated phospholipase A₂ (Lp-PLA₂) may be positively associated with risk of coronary artery disease, yet little is known about potentially modifiable factors related to Lp-PLA₂.
Objective: The aim of this study was to determine dietary, lifestyle, and clinical measures associated with Lp-PLA₂ activity.
Design: We measured Lp-PLA₂ activity in 853 female participants of the Nurses’ Health Study and 878 male participants of the Health Professionals Follow-Up Study who were free of cancer and cardiovascular disease. Multivariable linear regression models were used to assess the relation between potentially modifiable factors and Lp-PLA₂.
Results: The replacement of 5% of energy from carbohydrates with energy from protein was associated with 2.2 nmol \(\cdot \text{min}^{-1} \cdot \text{mL}^{-1} \) lower levels of Lp-PLA₂ (95% CI: \(-3.1, -0.4\)) activity, and every 15-g/d increase in alcohol consumption was associated with 4.4 nmol \(\cdot \text{min}^{-1} \cdot \text{mL}^{-1} \) lower levels of Lp-PLA₂ activity (95% CI: \(-6.4, -2.4\)). Smoking (β = 10.2; 95% CI: 4.8, 15.5), being overweight (β = 7.5; 95% CI: 3.6, 11.3), aspirin use (β = 6.0; 95% CI: 2.1, 10.0), hypercholesterolemia (β = 15.0; 95% CI: 11.3, 18.8), and age (β = 2.5; 95% CI: 1.34, 3.74) were associated with elevated Lp-PLA₂ activity, whereas postmenopausal hormone use (β = \(-15.8\); 95% CI: \(-19.4, -12.1\)) and cholesterol medication use (β = \(-9.6\); 95% CI: \(-18.2, -1.1\)) were inversely associated.
Conclusion: We found that not smoking, use of postmenopausal hormones, having a body mass index (in kg/m²) ≤ 25, increased alcohol consumption, and increased protein consumption all represent potential modifiable factors that may favorably influence Lp-PLA₂ activity.

INTRODUCTION
Lipoprotein-associated phospholipase A₂ (Lp-PLA₂) is a recently identified inflammatory biomarker that may be involved in cardiovascular disease pathogenesis. Epidemiologic studies have consistently shown a positive association with coronary artery disease (CHD) for both Lp-PLA₂ concentration (1–5) and Lp-PLA₂ activity (5–9) in both healthy populations (3, 6, 7) and clinical populations (1, 2, 4, 5, 8, 9).

Lp-PLA₂ is secreted by monocytes, macrophages, T lymphocytes, and mast cells and binds to the carboxy terminus of apolipoprotein B-100 to circulate with LDL cholesterol (10). Eighty percent of Lp-PLA₂ circulates bound to LDL cholesterol, 10–15% circulates with HDL cholesterol, and the remaining 5–10% circulates with VLDL cholesterol or Lp(a) (11). Lp-PLA₂ is believed to contribute to atherogenesis by promoting inflammatory processes in the arterial intima. Lp-PLA₂ enters the artery wall bound to LDL cholesterol, and once LDL cholesterol becomes oxidatively modified, Lp-PLA₂ hydrolyzes the sn₂ ester bond of oxidized phospholipids, generating 2 proinflammatory compounds that act within the intima of atherosclerotic lesions to recruit chemokines and activate inflammation (12, 13). Recent experimental evidence suggests that Lp-PLA₂ may be most etiologically relevant in the progression of atherosclerotic lesions to rupture-prone plaques (14, 15).

Although Lp-PLA₂ may play a causal role in atherogenesis, little is known about modifiable lifestyle characteristics that may alter circulating Lp-PLA₂ activity levels. Many studies have found correlations between Lp-PLA₂ and triglycerides, LDL cholesterol, HDL cholesterol, body mass index (BMI), metabolic syndrome, age, sex, and smoking (2, 3, 7, 16–20). In most studies the associations with triglycerides (21), LDL cholesterol (16, 22), and sex (16, 22, 23) persist after multivariable adjustment. However, previous studies have mostly only examined demographics and other biomarker variables, which, although interesting, are largely not directly modifiable. One recent trial examined the effect of supplementation with n-3 polyunsaturated fatty acids and found no effect on Lp-PLA₂ (24). However, no study has examined general dietary predictors of Lp-PLA₂. The aim of this study was to examine a wide variety of dietary, biomarker, lifestyle, and clinical predictors of Lp-PLA₂ activity among adult men and women.

¹ From the Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA (IJH, FBH, and EBR); GlaxoSmithKline, Research Triangle Park, NC (JJN); Cardiovascular Disease Prevention, Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA (NRC); and the Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (FBH and EBR).
² Supported by research grant HL34594 from the National Heart, Lung, and Blood Institute and by GlaxoSmithKline.
³ Address correspondence to EB Rimm, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115. E-mail: erimm@hsph.harvard.edu.

SUBJECTS AND METHODS

Study population

The Nurses’ Health Study (NHS) is a prospective cohort study of 121,700 US female nurses who were 30–55 y of age at baseline in 1976. The Health Professionals Follow-Up Study (HPFS) is a prospective cohort study of 51,529 US male dentists, veterinarians, pharmacists, optometrists, osteopathic physicians, and podiatrists who were 40–75 y of age at baseline in 1986. Between 1989 and 1990, 32,826 women provided a blood sample and between 1993 and 1994, 18,159 men provided a blood sample. Through 30 June 2004, we documented an incident myocardial infarction (MI) in 443 men and 431 women from these blood cohorts, who were free of cardiovascular disease and cancer at the time blood was drawn (25, 26). With the use of risk set sampling, 2 controls free of cardiovascular disease and cancer at blood draw and up to the date of diagnosis of the paired case were chosen randomly and matched for age (± 1 y), smoking (never, past, current: 1–14 cigarettes/d or ≥15 cigarettes/d), and month of blood draw. Among women, controls were also matched for fasting status and reported problems during the blood draw. The present study examined the 853 female and 878 male controls from this case-control study. We included controls whose matched case was confirmed as having CHD as well as those controls whose matched case was initially flagged as having CHD but through a medical record review was determined to not have CHD. This study was approved by the institutional review board of Brigham and Women’s Hospital and the Human Subjects Committee Review Board of the Harvard School of Public Health.

Blood collection and laboratory measurements

Men and women were sent a blood collection kit that included instructions and supplies (blood tubes, tourniquet, gauze, bandages, and needles). Blood samples from men were collected into EDTA-containing blood tubes and from women into heparin-containing blood tubes. The samples were chilled and sent back by overnight courier. The samples were centrifuged on arrival at the laboratory and were subsequently placed in cryotubes as plasma, buffy coat, and red blood cells. Cryotubes were then stored in liquid nitrogen freezers at −130 °C or lower.

Lp-PLA2 activity was measured by CAM-colorimetric activity test automated assay performed on a clinical chemistry analyzer with a colorimetric substrate for Lp-PLA2, which is similar to platelet activating factor with the addition of a nitrophenol label at the sn2 position. Hydrolysis of the colorimetric substrate was monitored by observing changes in visible absorbance over time (nmol · min⁻¹ · mL⁻¹) by using a standard curve for nitrophenol absorbance. CVs were 4.3% in women and 4.7% in men. In a subset of men who provided 2 blood samples 1 y apart (n = 15), the intraclass correlation coefficient for Lp-PLA2 activity was 0.85.

Concentrations of total cholesterol, triglycerides, and HDL cholesterol were measured simultaneously with a Hitachi 911 analyzer by using reagents and calibrators from Roche Diagnostics (Indianapolis, IN); CVs were <1.8% in both men and women. LDL-cholesterol concentrations were measured by using a homogenous direct method from G enzyme (Cambridge, MA); CVs were <3.1% in both men and women. Glycated hemoglobin (Hb A1c) concentrations were based on turbidimetric immunoinhibition with hemolyzed whole blood or packed red cells; CVs were <3.0% in both men and women. Intercellular adhesion molecule 1 (ICAM-1) was measured with a commercial enzyme-linked immunosorbent assay (R & D Systems, Minneapolis, MN); CVs were <3.6%. In men, C-reactive protein (CRP) was measured by using immunoturbidimetry with reagents and calibrators from Denka Seiken (Niigata, Japan); CVs were <2.8%. In women, CRP was measured with the US CRP ELISA kit (Diagnostic Systems Laboratories Inc, Webster, TX); CV was <5.1%.

Assessment of lifestyle exposures

Both cohorts were followed through biennially mailed questionnaires to collect information on lifestyle factors and health behaviors. On the biennial questionnaires, the participants provided information about their age, weight, smoking status, aspirin use, cholesterol-lowering medication use, hormone therapy use (women only), and physical activity. We calculated BMI as the ratio of weight (in kg) over height squared (in m); self-reported weight was strongly correlated (r = 0.97) with independently measured weight in a validation substudy from this population of men and women (27). Physical activity was calculated as metabolic equivalents (Mets) per week by using the duration of moderate or vigorous forms of exercise multiplied by the intensity of the activity (28). History of hypertension, history of high cholesterol, and family history of MI were determined from self-reports before blood collection.

We obtained dietary information with a 131-item self-administered semiquantitative food-frequency questionnaire (sFFQ). Participants were asked to indicate how frequently, on average, they consumed particular food items over the course of the past year. Average macronutrient and micronutrient consumption were calculated by using nutrient values from the Harvard University Food Composition Database. Dietary intake collected by using the sFFQ has been shown to be a valid estimator of relative food intake when compared with multiple diet records (29, 30). In addition, alcohol intake assessed by using the sFFQ was highly associated with alcohol intake assessed by using multiple diet records in women (r = 0.90) and men (r = 0.86) (31). Dietary variables used in the present analyses included total calories, carbohydrates, protein, total fat, saturated fat, polyunsaturated fat, monounsaturated fat, trans fat, and alcohol.

Statistical analysis

Age-adjusted Spearman correlations were used to determine correlations between cardiovascular disease risk factors and Lp-PLA2 activity. Multivariable linear regression models were used to predict mean Lp-PLA2 activity by using dietary, biomarker, and lifestyle and clinical variables. We used robust variance estimates to allow for valid statistical inference without the need for normal distribution assumptions (32). Clinical and lifestyle variables included age (5-y age categories), BMI (in kg/m²: <25, 25–29.9, and ≥30), smoking (never, past, and current), physical activity (per 20 METs/wk), aspirin use (yes or no), cholesterol-lowering medication use (yes or no), hormone replacement therapy (never, past, and current; women only), history of hypertension (yes or no), history of diabetes (yes or no),
and family history of MI (yes or no). To model dietary variables, we used multivariable energy density models to estimate the change in mean Lp-PLA2 activity associated with a 5% energy substitution of carbohydrate for protein, saturated fat, monounsaturated fat, or polyunsaturated fat and a 1% substitution of carbohydrate for trans fat. Alcohol was modeled per 15 g/d of consumption. All models were adjusted for total energy intake. LDL cholesterol is the primary carrier of Lp-PLA2 and has been shown to be strongly related to Lp-PLA2 activity, as has HDL cholesterol. Previous studies have suggested that CRP and Lp-PLA2 act in separate inflammatory pathways and are uncorrelated, but no study has examined the relation between these 2 inflammatory biomarkers after multivariable adjustment. Therefore, we chose to analyze and adjust for these biomarkers. We did not conduct these analyses with triglycerides or ICAM because of insufficient numbers of participants with these measurements and did not include apolipoprotein B because of its close relation with LDL cholesterol. LDL cholesterol and HDL cholesterol were modeled per 1-SD increase in the biomarker, and CRP was modeled as the log of the biomarker. If there was an absence of heterogeneity of results between the NHS and HPFS as determined by the Q statistic (33), we pooled the results from the men and the women by weighting each estimate by the inverse of its variance using STATA statistical software (StataCorp, College Station, TX). All other analyses were performed by using SAS software (version 9.1; SAS Institute Inc, Cary, NC) and were conducted separately for men and women.

RESULTS

Mean levels of Lp-PLA2 activity were higher among men than among women (Table 1 and Table 2). Lp-PLA2 had modest and significant positive associations with age, total cholesterol, LDL cholesterol, apolipoprotein B, and BMI and inverse associations with HDL cholesterol in both men and women (Table 3).

To assess the independent relations of dietary, clinical, lifestyle, and biomarker variables with Lp-PLA2 activity, we used multivariable linear regression models to predict mean Lp-PLA2 activity. Except where noted, there were no significant differences in the estimated effect on Lp-PLA2 activity between men and women for included characteristics; thus, sex-specific and pooled estimates are presented (Table 4). After mutual multivariable adjustment whereby all variables were included in the same model, providing estimates adjusted for all other model variables, many clinical and lifestyle variables were significantly related to Lp-PLA2 activity (Table 4). A 5-y difference in age ($\beta = 2.54; 95\% CI: 1.34, 3.74$) and current smoking ($\beta = 10.19; 95\% CI: 4.84, 15.54$) was significantly associated with Lp-PLA2 activity. Aspirin use was also positively associated with Lp-PLA2 activity ($\beta = 6.03; 95\% CI: 2.05, 10.01$).

In addition among women, postmenopausal hormone use was inversely associated with Lp-PLA2 activity ($\beta = -15.73; 95\% CI: -19.35, -12.11$). Compared with participants with a BMI < 25, those with a BMI between 25 and 29.9 had significantly higher levels of Lp-PLA2 activity ($\beta = 7.45; 95\% CI: 3.55, 11.34$). Although we had fewer participants in the obese category, a BMI > 30 was also associated ($\beta = 4.61; 95\% CI: -1.57, 10.80$) with higher levels of activity, albeit not significantly so.

Table 1

Age-adjusted baseline characteristics of 853 women from the Nurses’ Health Study by quartile of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity

<table>
<thead>
<tr>
<th>Quartile of Lp-PLA2 activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>P for trend2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants</td>
<td>212</td>
<td>215</td>
<td>212</td>
<td>214</td>
<td>---</td>
</tr>
<tr>
<td>Lp-PLA2 (mg mm$^{-1}$ mL$^{-1}$)</td>
<td>109.4 (45.9–127.6)1</td>
<td>139.1 (127.7–150.8)</td>
<td>162.3 (151.0–175.3)</td>
<td>204.3 (175.5–371.4)</td>
<td>---</td>
</tr>
<tr>
<td>Age (y)</td>
<td>58.8 ± 6.4</td>
<td>60.3 ± 6.5</td>
<td>59.7 ± 6.7</td>
<td>60.6 ± 6.3</td>
<td>---</td>
</tr>
<tr>
<td>Current smoking (%)</td>
<td>21</td>
<td>22</td>
<td>30</td>
<td>35</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>25.0 ± 4.2</td>
<td>24.7 ± 4.0</td>
<td>25.1 ± 4.3</td>
<td>25.9 ± 4.5</td>
<td>0.01</td>
</tr>
<tr>
<td>Postmenopausal hormone use (%)</td>
<td>53</td>
<td>45</td>
<td>28</td>
<td>25</td>
<td><0.001</td>
</tr>
<tr>
<td>Family history of MI (%)</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>0.18</td>
</tr>
<tr>
<td>History of hypertension (%)</td>
<td>26</td>
<td>24</td>
<td>30</td>
<td>30</td>
<td>0.20</td>
</tr>
<tr>
<td>History of hypercholesterolemia (%)</td>
<td>29</td>
<td>41</td>
<td>43</td>
<td>50</td>
<td><0.001</td>
</tr>
<tr>
<td>History of diabetes (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>Cholesterol medication use (%)</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0.98</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>111.4 ± 29.0</td>
<td>129.2 ± 28.6</td>
<td>142.4 ± 30.4</td>
<td>159.0 ± 38.6</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>69.2 ± 18.8</td>
<td>62.3 ± 15.4</td>
<td>58.4 ± 14.4</td>
<td>50.6 ± 13.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)3</td>
<td>93.0</td>
<td>96.0</td>
<td>91.0</td>
<td>115.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Hb A1c (%)</td>
<td>5.5 ± 0.5</td>
<td>5.5 ± 0.4</td>
<td>5.6 ± 0.7</td>
<td>5.6 ± 0.9</td>
<td>0.24</td>
</tr>
<tr>
<td>CRP (mg/L)3</td>
<td>2.2</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>0.23</td>
</tr>
<tr>
<td>Physical activity (MET-h/wk)</td>
<td>20.6 ± 23.4</td>
<td>20.2 ± 21.9</td>
<td>17.3 ± 17.4</td>
<td>18.7 ± 20.5</td>
<td>0.18</td>
</tr>
<tr>
<td>Alcohol (g/d)</td>
<td>6.7 ± 10.4</td>
<td>7.1 ± 12.5</td>
<td>6.5 ± 10.1</td>
<td>4.9 ± 8.3</td>
<td>0.06</td>
</tr>
</tbody>
</table>

1 CRP, C-reactive protein; Hb A1c, glycosylated hemoglobin; MET-h, metabolic equivalent hours; MI, myocardial infarction.

2 Values derived from an age-adjusted regression across Lp-PLA2 activity quartile.

3 Mean ± SD (all such values).

4 Mean ± SD (all such values).

5 3593 women had fasting triglyceride measurements.

6 Values are medians.
TABLE 2
Age-adjusted baseline characteristics of 878 men from the Health Professionals Follow-Up Study by quartile of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity

<table>
<thead>
<tr>
<th>Quartile of Lp-PLA2 activity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>P for trend^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants</td>
<td>219</td>
<td>220</td>
<td>220</td>
<td>219</td>
<td>—</td>
</tr>
<tr>
<td>Lp-PLA2 (ng · mm^−1 · mL^−1)</td>
<td>159.9 (69.6–181.8)</td>
<td>194.9 (182.0–206.4)</td>
<td>218.8 (206.5–232.9)</td>
<td>257.5 (233.0–344.8)</td>
<td>—</td>
</tr>
<tr>
<td>Age (y)</td>
<td>63.6 ± 9.0^a</td>
<td>63.9 ± 8.6</td>
<td>64.2 ± 8.7</td>
<td>65.2 ± 8.1</td>
<td>—</td>
</tr>
<tr>
<td>Current smoking (%)</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>0.02</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>25.4 ± 3.4</td>
<td>25.6 ± 3.5</td>
<td>25.6 ± 3.2</td>
<td>26.0 ± 3.3</td>
<td>0.07</td>
</tr>
<tr>
<td>Family history of MI (%)</td>
<td>31</td>
<td>33</td>
<td>29</td>
<td>34</td>
<td>0.76</td>
</tr>
<tr>
<td>History of hypertension (%)</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>30</td>
<td>0.91</td>
</tr>
<tr>
<td>History of hypercholesterolemia (%)</td>
<td>24</td>
<td>45</td>
<td>47</td>
<td>46</td>
<td><0.001</td>
</tr>
<tr>
<td>History of diabetes (%)</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0.56</td>
</tr>
<tr>
<td>Cholesterol medication use (%)</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>0.16</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>106.2 ± 26.8</td>
<td>122.9 ± 27.9</td>
<td>133.1 ± 25.8</td>
<td>142.5 ± 29.9</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>50.1 ± 14.4</td>
<td>47.7 ± 11.9</td>
<td>45.5 ± 11.5</td>
<td>41.0 ± 10.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)^5,6</td>
<td>86.0</td>
<td>102.5</td>
<td>123.0</td>
<td>130.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Hb A1c (%)</td>
<td>5.6 ± 0.6</td>
<td>5.6 ± 0.6</td>
<td>5.6 ± 0.7</td>
<td>5.5 ± 0.6</td>
<td>0.34</td>
</tr>
<tr>
<td>CRP (mg/L)^b</td>
<td>0.94</td>
<td>1.05</td>
<td>0.98</td>
<td>1.04</td>
<td>0.82</td>
</tr>
<tr>
<td>Physical activity (MET-h/wk)</td>
<td>37.6 ± 41.3</td>
<td>35.6 ± 38.8</td>
<td>39.3 ± 39.7</td>
<td>36.6 ± 37.6</td>
<td>0.93</td>
</tr>
<tr>
<td>Alcohol (g/d)</td>
<td>14.0 ± 17.1</td>
<td>13.8 ± 16.3</td>
<td>11.4 ± 14.1</td>
<td>9.7 ± 13.2</td>
<td>0.001</td>
</tr>
</tbody>
</table>

^1 CRP, C-reactive protein; Hb A1c, glycated hemoglobin; MET-h, metabolic equivalent hours; MI, myocardial infarction.

^2 Values derived from an age-adjusted regression across Lp-PLA2 activity quartile.

^3 Mean; range in parentheses (all such values).

^4 Mean ± SD (all such values).

^5 506 men had fasting triglyceride measurements.

^6 Values are medians.

A history of high cholesterol was associated with higher Lp-PLA2 activity (β = 15.07; 95% CI: 11.31, 18.83). We examined the role of cholesterol-lowering medication use on Lp-PLA2 activity levels separately for participants with and without a history of high cholesterol. For those with a history of high cholesterol, cholesterol-lowering medication use was associated with lower levels of Lp-PLA2 activity (β = −9.60; 95% CI: −18.15, −1.05). For those without a history of high cholesterol, participants taking cholesterol-lowering medication had higher levels of Lp-PLA2 activity, although there were few participants in this treated category, and the relation was not statistically significant (β = 5.00; 95% CI: −3.40, 13.41). In addition, all β coefficients were unchanged when we excluded the 22 women and 61 men who used cholesterol-lowering medication at the time of blood draw (data not shown).

Nutritional variables were also associated with Lp-PLA2 activity. To assess the relation between nutrients and Lp-PLA2 activity, we used nutrient density models that estimate the effect of substituting various macronutrients for carbohydrates. It is an isocaloric model and thus represents a change in diet rather than a mere addition of any given macronutrient. With this model, every 5% of energy consumed as protein instead of carbohydrate was associated with a 2.17 nmol · min^−1 · mL^−1 (95% CI: 0.43, 3.09) lower level of Lp-PLA2 activity. Also, a 15-g increase in alcohol intake was associated with lower Lp-PLA2 activity levels. (β = −4.36; 95% CI: −6.35, −2.37). The magnitude of the associations from a parsimonious model that only adjusted for statistically significant potentially modifiable predictors (postmenopausal hormone use, current smoking, cholesterol medication use among those with high cholesterol, overweight, aspirin use, alcohol intake, and protein intake) and additional conceptually necessary risk factors (age, obesity, past smoking, and total calories consumed) is shown in Figure 1. Restricting the multivariable model to just these factors did not materially alter any estimates.

We also assessed the associations above after adjusting for LDL cholesterol, HDL cholesterol, and CRP. LDL cholesterol, HDL cholesterol, and triglycerides in men.

TABLE 3
Age-adjusted Spearman correlation coefficients (r) between plasma lipoprotein-associated phospholipase A2 activity and selected cardiovascular disease risk factors among men and women from the Nurses’ Health Study and Health Professionals Follow-Up Study

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>0.10^2</td>
<td>0.09^3</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.31^2</td>
<td>0.37^2</td>
</tr>
<tr>
<td>LDL</td>
<td>0.49^2</td>
<td>0.48^2</td>
</tr>
<tr>
<td>HDL</td>
<td>−0.41^2</td>
<td>−0.27^2</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)^4</td>
<td>0.17^2</td>
<td>0.27^2</td>
</tr>
<tr>
<td>Apolipoprotein B (mg/dL)</td>
<td>0.42^2</td>
<td>0.49^2</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>−0.07^4</td>
<td>0.02</td>
</tr>
<tr>
<td>Hb A1c (%)</td>
<td>0.03</td>
<td>−0.02</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>0.08^5</td>
<td>0.09^5</td>
</tr>
<tr>
<td>ICAM-1 (ng/mL)^6</td>
<td>0.19^5</td>
<td>0.11^5</td>
</tr>
</tbody>
</table>

^1 CRP, C-reactive protein; Hb A1c, glycated hemoglobin; ICAM-1, intercellular adhesion molecule 1.

^2 P < 0.001.

^3 P < 0.01.

^4 n = 593 for fasting triglycerides in women and n = 506 for fasting triglycerides in men.

^5 P < 0.05.

^6 n = 449 for women and n = 525 for men.
Dietary variables were significantly associated with pooled Lp-PLA2 activity (increase in logCRP (SD = 1.14 for both men and women) was associated with alcohol consumption (per 15 g/d) among men), as well as with lowering medication use (11.87 nmol Lp-PLA2 activity among women and 30.8 mg/dL among men) was associated with an 11.87 nmol Lp-PLA2 activity. In a model adjusted for all dietary, lifestyle, and clinical variables, and also adjusted for LDL cholesterol, HDL cholesterol, and CRP were significantly related to Lp-PLA2 activity. In the biomarker-adjusted model, the relation between protein intake and Lp-PLA2 was essentially unchanged (data not shown).

HDL cholesterol, and CRP were significantly related to Lp-PLA2 activity.

In a model adjusted for all dietary, lifestyle, and clinical variables, and also adjusted for LDL cholesterol, HDL cholesterol, and CRP, a 1-SD increment in LDL cholesterol (36.7 mg/dL among women and 30.8 mg/dL among men) was associated with a 17.99 nmol·min⁻¹·mL⁻¹·lower level of Lp-PLA2 activity (β = 17.9; 95% CI: 16.30, 19.68), and a 1-SD increment in HDL cholesterol (17.0 mg/dL among women and 12.6 mg/dL among men) was associated with an 11.87 nmol·min⁻¹·mL⁻¹·lower level of Lp-PLA2 activity (β = –11.87; 95% CI: –13.72, –10.03). In this fully adjusted model, a 1-SD increase in logCRP (SD = 1.14 for both men and women) was significantly associated with pooled Lp-PLA2 activity (β = –3.65; 95% CI: –5.24, –2.07).

Adjustment of clinical and nutritional variables for these biomarkers modestly attenuated the relations with Lp-PLA2 activity. For example, the associations were weaker for cholesterol-lowering medication use (β = –5.6; 95% CI: –13.09, 1.89), alcohol consumption (β = –1.73; 95% CI: –3.48, 0.01), age (β = 1.94; 95% CI: 0.93, 2.95), current smoking (β = 6.12; 95% CI: 1.66, 10.59), postmenopausal hormone use (β = –6.85; 95% CI: –11.25, –2.47), and aspirin use (β = 4.05; 95% CI: 0.75, 7.35). The associations were also attenuated and no longer significant for both the overweight (β= 1.07; 95% CI: –2.39, 4.53) and obese (β = –1.14; 95% CI: –6.51, 4.31) categories after adjustment for biomarkers. In the biomarker-adjusted model, the relation between protein intake and Lp-PLA2 was essentially unchanged (β = –2.67; 95% CI: –4.05, –1.28), and the relation between monounsaturated fat and Lp-PLA2 activity was strengthened (β = 5.05; 95% CI: 0.17, 9.92). A 5% energy increment in consumption of monounsaturated fat (as a replacement of energy from carbohydrates) was associated with a 5.05 nmol·min⁻¹·mL⁻¹·higher level of Lp-PLA2 activity. Including these biomarkers in the model increased the R² from 0.14 to 0.41 in women and from 0.09 to 0.34 in men.

Use of postmenopausal hormones is associated with an alteration in lipid profiles. We therefore tested for effect modification of these relations by postmenopausal hormone status. In all multivariable models, the relations between dietary, lifestyle, clinical, and biomarker factors and Lp-PLA2 activity were essentially unchanged (data not shown).

DISCUSSION

In this cross-sectional study of apparently healthy men and women, potentially modifiable clinical variables, including body...
weight, smoking, and use of cholesterol-lowering medication, postmenopausal hormones, and aspirin were independently associated with higher levels of Lp-PLA₂ activity. In addition, alcohol and protein intakes were inversely associated with Lp-PLA₂ activity, which suggests that nutritional factors may have the potential to influence Lp-PLA₂ activity.

This is the first study to examine associations between dietary factors and Lp-PLA₂ activity in a large cross-sectional study of men and women. Alcohol intake was inversely associated with Lp-PLA₂ activity. It is well documented that moderate alcohol intake lowers the risk of CHD, an effect that is likely primarily mediated through alcohol’s ability to increase HDL-cholesterol concentrations (34, 35). In our analysis, adjustment for HDL cholesterol, but not for LDL cholesterol, attenuated the association with Lp-PLA₂ activity (data not shown). Thus, the alcohol-mediated alterations in HDL cholesterol may explain the relation between alcohol intake and Lp-PLA₂ activity. Consumption of protein relative to carbohydrate intake was associated with decreased Lp-PLA₂ activity. Controlled feeding studies suggest that replacing carbohydrates with protein can favorably alter plasma lipid profiles by both increasing HDL cholesterol and decreasing LDL cholesterol and triglycerides (36). However, per our results, the relation between protein and Lp-PLA₂ activity was essentially unchanged after adjustment for LDL cholesterol and HDL cholesterol, which suggests that an effect of protein on Lp-PLA₂ activity may be due to mechanisms other than protein’s affect on lipid concentrations. In a recent small interventional study that assessed the effect of a low-carbohydrate diet on Lp-PLA₂ activity levels, Tzotzas et al (37) found that an average 10-kg weight loss achieved over 4 mo was associated with a 10% decrease in Lp-PLA₂ activity. All participants received the same low-carbohydrate diet and, thus, the effect of specific nutrients on Lp-PLA₂ activity could not be distinguished from the effect of weight loss on Lp-PLA₂ activity. However, this evidence in conjunction with the modest associations observed in our study suggest that diet may represent a potentially modifiable pathway through which Lp-PLA₂ activity can be altered.

Lp-PLA₂ activity levels were higher among men than among women, a finding that has been consistently observed across other studies (2, 7, 16, 19, 38–41). This could be due to an estrogen-mediated down-regulation of Lp-PLA₂ activity (42). This sex difference could also be due to lower concentrations of LDL cholesterol among women. LDL cholesterol is both the primary carrier of Lp-PLA₂ and, in its oxidized form, is the primary substrate on which Lp-PLA₂ activity operates. Lower concentrations of LDL cholesterol could result in both a decreased circulation of Lp-PLA₂ and decreased substrate for this enzyme. However, after adjustment for LDL-cholesterol and HDL-cholesterol concentrations, postmenopausal hormone use was still inversely associated with Lp-PLA₂ activity. Thus, this does support a direct independent down-regulatory effect of estrogen on Lp-PLA₂ activity.

Eighty percent of Lp-PLA₂ circulates bound to LDL cholesterol, and up to an additional 15% circulates with HDL cholesterol (43, 44). Many of the modifiable cardiovascular disease risk factors we examined in this study can affect LDL-cholesterol and HDL-cholesterol concentrations. Thus, we chose to primarily analyze our data without initially adjusting for these lipid variables because they may be on the causal pathway. However, when we did adjust for LDL cholesterol and HDL cholesterol, we observed a modest attenuation of certain variables, particularly a history of high cholesterol, cholesterol-lowering medication use, postmenopausal hormone use, and current smoking. Lipid variables do appear to be the most important determinant of Lp-PLA₂ activity, as evidenced by the fact that a model that did not include LDL cholesterol and HDL cholesterol only explained 9% of the variation in Lp-PLA₂ in men and 14% in women, whereas 34% of the variation in men and 41% in women was explained after LDL cholesterol and HDL cholesterol were included.

After multiple adjustment for traditional risk factors, we observed an inverse association between CRP and Lp-PLA₂ activity, which was consistent with the findings for Lp-PLA₂ mass among women in the Hormones and Biomarkers Predicting Stroke Study of the Women’s Health Initiative (45) and for Lp-PLA₂ activity among men in the Dallas Heart Study (46). Most studies have found weak or no associations between CRP and Lp-PLA₂ (1, 7, 18, 19, 38–49), which potentially reflects disparate inflammatory pathways toward CHD (47). However, these studies did not provide multivariable adjustment for other biomarkers or clinical risk factors, and the present study provides evidence of a relation between these 2 inflammatory biomarkers.

We found a significant association between smoking and Lp-PLA₂ activity, a finding seen across some (16, 40, 41, 50) but not all (2–4, 7, 19) studies. However, most other studies assessed this association with little or no adjustment for other lifestyle characteristics, and there were differences across studies in how smoking was characterized. Smoking was associated with increased LDL cholesterol (51) and has been shown to increase oxidative modification of LDL (52, 53). Thus, smoking may increase both the carrier and the substrate for Lp-PLA₂.

In the present study, being overweight was also associated with Lp-PLA₂, a finding that has been observed previously (16).
However, the relation with body weight was not linear and was not significantly associated in obese individuals. This may have been due to model instability at the high end of BMI, although a study among elderly US men and women reported a similar nonlinear relation (54). In our analyses, the association between BMI and \(\text{Lp-PLA}_2 \) was fully attenuated after adjustment for several lipid biomarkers. A study in a Japanese population found that, after adjustment for LDL cholesterol and HDL cholesterol, BMI was inversely associated with \(\text{Lp-PLA}_2 \) (22). It is possible that the relation between BMI and \(\text{Lp-PLA}_2 \) is mediated entirely through the lipid pathways, but this relation is likely more complex and warrants further study.

Results from a recent meta-analysis of 6 major trials of aspirin use to prevent cardiovascular disease suggest a decreased risk of CHD among aspirin users (55). A recent study of \(\text{Lp-PLA}_2 \) mass and stroke found that \(\text{Lp-PLA}_2 \) was inversely associated with aspirin use among controls, although this association was not adjusted for other risk factors (45). Because aspirin has antiinflammatory properties, it is paradoxical that the use of aspirin was positively associated with \(\text{Lp-PLA}_2 \) activity in the present study. It is possible that participants with a perceived high level of baseline risk began an aspirin regimen for cardioprotection, leading to channeling bias or confounding by indication. However, the relation between aspirin use and \(\text{Lp-PLA}_2 \) activity persisted after adjustment for traditional clinical risk factors, including high cholesterol, hypertension, diabetes, smoking, and family history of heart disease. This relation also persisted after adjustment for biomarkers. Interestingly, in the present study, aspirin use had a similar positive association with LDL-cholesterol concentrations in a multivariable-adjusted model (data not shown). Thus, further studies are needed to determine the nature of these relations.

This study had several limitations. First, the analysis was based on cross-sectional data and, thus, causality cannot be inferred. However, clinical, dietary, and lifestyle factors were measured 2–4 years before participants provided blood samples. Thus, although there is still potential for confounding by indication as described above, reverse causality was unlikely. Second, both the questionnaire and biomarker data were susceptible to some degree of measurement error. However, the FFQ questionnaire used has been shown to assess diet with adequate validity when compared with multiple diet records (29, 30), and errors due to self-report methods are unlikely to be related to \(\text{Lp-PLA}_2 \) activity. Thus, any misclassification would be nondifferential and, if anything, biased these results toward the null. It should also be noted that we measured circulating \(\text{Lp-PLA}_2 \) activity and could not measure \(\text{Lp-PLA}_2 \) activity in the plaque or intima itself, where it may be of most biological relevance.

In conclusion, we found that not smoking, use of postmenopausal hormones, having a BMI \(\leq 25 \), increased alcohol consumption, and increased protein consumption all represent modifiable factors that favorably influence \(\text{Lp-PLA}_2 \) activity. Clinical interventions that aim to favorably influence the lipid profile may confer a beneficial effect on \(\text{Lp-PLA}_2 \). However, this study suggests that the identified modifiable variables may affect \(\text{Lp-PLA}_2 \) activity independent of their effects on the lipid profile. Because \(\text{Lp-PLA}_2 \) activity may represent a novel pathway associated with increased CHD, it is necessary to identify other modifiable factors that influence \(\text{Lp-PLA}_2 \) activity.

The authors’ responsibilities were as follows—JJH: analysis design, analysis execution, results interpretation, and manuscript preparation; JNJ: study design and manuscript review; NRC and FBH: analysis review and manuscript review; and EBR: study design, analysis design, results interpretation, and manuscript review. GlaxoSmithKline had no access to the data, and the academic institution had full and final right to publish. JNJ reported employment by GlaxoSmithKline. EBR and JJH reported partial study funding by GlaxoSmithKline. NRC and FBH reported no potential conflicts of interest.

REFERENCES

36. Wolfe BM, Giovannetti PM. Short-term effects of substituting protein
34. Mukamal KJ, Jensen MK, Gronbaek M, et al. Drinking frequency,
33. Cochran WG. The comparison of percentages in matched samples.
32. White HA. A heteroskedasticity-consistent covariance matrix estimator
26. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-Hydroxyvitamin D and
21. Noto H, Chitkara P, Raskin P. The role of lipoprotein-associated phos-
17. Iribarren C, Gross MD, Darbinian JA, Jacobs DR Jr, Sidney S, Loria
15. Stafforini DM, Tjoelker LW. Human plasma platelet-activating factor
14. Miyaura S, Maki N, Byrd W, Johnston JM. The hormonal regulation of
10. Bartolucci AA, Howard G. Meta-analysis of data from the six primary
7. Craig WY, Palomaki GE, Haddow JE. Cigarette smoking and serum
5. Sabatine MS, Morrow DA, O’Donoghue M, et al. Prognostic utility of
3. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-Hydroxyvitamin D and

DIETARY AND LIFESTYLE PREDICTORS OF LP-PLA2