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Modelling catchment inflows into Lake Victoria:

regionalisation of the parameters of a conceptual

water balance model

Michael Kizza, Jose-Luis Guerrero, Allan Rodhe, Chong-yu Xu

and Henry K. Ntale
ABSTRACT
The goal of this study was to evaluate regionalisation methods that could be used for modelling

catchment inflows into Lake Victoria. WASMOD, a conceptual water balance model, was applied to

nine gauged sub-basins in Lake Victoria basin in order to test the transferability of model parameters

between the basins using three regionalisation approaches. Model calibration was carried out within

the GLUE (generalised likelihood uncertainty estimation) framework for uncertainty assessment. The

analysis was carried out for the period 1967–2000. Parameter transferability was assessed by

comparing the likelihood values of regionalised simulations with the values under calibration for each

basin. WASMOD performed well for all study sub-basins with Nash–Sutcliffe values ranging between

0.70 and 0.82. Transferability results were mixed. For the proxy-basin method, the best performing

parameter donor basin was Mara with four proxy basins giving acceptable results. Sio, Sondu, Gucha

and Duma also performed well. The global mean method gave acceptable performance for seven of

the nine study basins. The ensemble regionalisation method provides the possibility to consider

parameter uncertainty in the regionalisation. Ensemble regionalisation method performed best with

an average departure of 40% from the observed mean annual flows compared to 48 and 60% for

proxy-basin and global mean methods, respectively.
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INTRODUCTION
Modelling catchment runoff into Lake Victoria presents two

major problems. The first problem is that gauged tributaries

account for only about 50% of the Lake Victoria basin area.

For these gauged tributaries, the problem is related to the

selection of a realistic modelling framework that takes into

account the limitations of data availability and quality.

Uncertainties in rainfall-runoff modelling are a result of

errors in both input and calibration data and also result

from the simplifications that come with mathematical rep-

resentation of the physical processes that govern flow

generation and routing (Kundzewicz ; Beven & Freer

; Refsgaard et al. ). The proper recognition of and
accounting for uncertainties is currently acknowledged as

an integral part of any hydrological modelling process

(Wagener & Gupta ). The second problem in modelling

catchment inflow into Lake Victoria is related to how to

make flow predictions in the ungauged tributaries using

information in the gauged part. An ungauged basin is

defined as one with inadequate records (in terms of both

data quantity and quality) of hydrological observations to

enable computation of hydrological variables of interest at

the appropriate spatial and temporal scales, and to the

accuracy acceptable for practical applications. Prediction

of hydrologic variability in ungauged basins has been
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recognised as one of the major issues in hydrological

sciences (Sivapalan et al. ). The lack of calibration

and validation data in ungauged basins makes hydrological

prediction in ungauged basins very difficult.

Large parts of the globe are ungauged and even the num-

bers of gauged basins are declining very fast due to factors

like insufficient funding, inadequate institutional frame-

works, a lack of appreciation of the worth of long term

data and, sometimes, political turmoil (Sene & Farquharson

; Stokstad ; Alsdorf et al. ). Regionalisation of

hydrologic models refers to the transfer of model parameter

values from one catchment (usually gauged) to other catch-

ments (usually ungauged or poorly gauged) (Blöschl &

Sivapalan ; McIntyre et al. ; Parajka et al. ).

In the context of conceptual water balance modelling, the

aim is to transfer effective parameter values from gauged

catchments to ungauged catchments. The gauged basin,

from which information is to be transferred, should be simi-

lar in some way to the ungauged basin, to which the

information is to be transferred (Merz & Blöschl ). Sei-

bert () noted that the general problem in regionalisation

of model parameters is that there are usually a limited

number of gauged catchments available. Modelling larger

regions would increase the number of available gauged

catchments but would also increase the variation in cli-

matic, geological and physiographic characteristics

resulting in additional scatter as variables change. Model

parameters are usually poorly defined as almost equally

good simulations may be obtained at very different locations

in the parameter space (Beven & Binley ; Jakeman &

Hornberger ). This parameter uncertainty may cause

scatter in the relation between parameter and catchment

properties and prevent them from being discovered. None-

theless, the methods used for regionalising catchment

parameters are broadly classified into three groups, namely

(1) regression between individual calibrated parameters

and catchment characteristics, (2) catchment spatial proxi-

mity which involves either adopting a calibrated parameter

set from the nearest neighbour or interpolating calibrated

parameters spatially, and (3) catchment similarity of phys-

ical properties which involves adopting a calibrated

parameter set from the most physically similar catchment

or interpolating calibrated parameters in similarity space.

Regression methods include (a) one step regression – regional
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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calibration (Fernandez et al. ; Hundecha & Bárdossy

; Parajka et al. ), and (b) multivariate regression

(Abdulla & Lettenmaier ; Seibert ; Xu a).

Examples of catchment spatial proximity methods include

(a) clustering approach (Burn & Boorman ; Huang

et al. ), and (b) spatial interpolation method, for

example, linear interpolation (Guo et al. ), kriging

interpolation (Vandewiele & Elias ; Parajka et al.

) and so on. Proxy-basin method (Klemes ; Xu

b; Jin et al. ) is an example of a catchment similarity

method whereby parameters of a gauged basin are directly

applied to ungauged basins that are deemed to be similar

to the gauged basin.

Regression is the most commonly applied regionalisa-

tion method whereby parameters for ungauged basins are

determined by regression equations developed between the

optimised parameters and catchment attributes in a set of

gauged basins. However, two major limitations affect this

method. First, parameters may be poorly determined and

strongly interrelated, hence unstable (Beven ; Jin et al.

; Peel & Blöschl ). Second, some parameters may

not be well estimated by regional relationships because the

poor correlation between parameter values and physically

measurable quantities (Abdulla & Lettenmaier ) which

may be due to factors like equifinality (Beven & Binley

; Jakeman & Hornberger ), difficulty in deciding

which physical characteristics are the most important (Para-

jka et al. ), and scatter of relationships between

catchments may result in difficulties in finding the best

regression form (Seibert ). Hundecha & Bárdossy

() tried to overcome the first limitation by first defining

a prior for regression functions and then calibrating the par-

ameters of the regression functions instead of model

parameters themselves. However, in their application, the

prior regression function couldn’t be justified and the

second limitation still remained. In addition, Merz &

Blöschl () found that methods based on spatial proxi-

mity alone performed significantly better than any of the

regression methods based on catchment attributes.

Parajka et al. () compared four groups of regionali-

sation methods (regional averages of calibrated

parameters, spatial proximity techniques, regression against

catchment characteristics and physical similarity tech-

niques) using an 11 parameter semi-distributed conceptual
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model, calibrated to daily streamflow and snow cover,

across 320 Austrian catchments. They also concluded that

spatial proximity and combination physical similarity

methods performed best. Similarity-based approaches,

whereby the complete set of model parameters is transferred

from a donor basin to an ungauged basin to which it is most

similar, have an advantage that no assumptions are made

about the relationship (linear or otherwise) between model

parameters and catchment characteristics which is the

basis of regression approaches. Kokkonen et al. () con-

cluded that ‘where we have reason to believe that, in

hydrological terms, a gauged basin resembles an ungauged

basin, it might be worthwhile to adopt the entire set of cali-

brated parameters from the gauged basin instead of deriving

quantitative relationships between basin characteristics and

model parameters’. As such, the problem of estimating

model parameters in ungauged basins is still a subject of

investigation and there is no universal agreement of which

methods work best for all conditions.

In this paper, WASMOD, a conceptual water balance

model (Xu et al. ; Xu ), was applied to nine sub-

basins in Lake Victoria basin in East Africa with the aims
Figure 1 | Lake Victoria and the nine sub-basins studied in this paper.

s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
of (1) examining the applicability of the model to the basin

as an extension of earlier work by Kizza et al. (), and

(2) examining the possibility of transferring the calibrated

parameter sets to the ungauged basins. This transfer is

necessitated by the fact that a large part of Lake Victoria

basin is ungauged or poorly gauged and yet lake water bal-

ance studies require proper accounting for catchment

inflow. Three spatial similarity-based methods were tested

whereby the complete set of parameters was applied,

namely the proxy-basin method, global mean methods and

ensemble regionalisation based on the proxy basin method.
STUDY AREA AND DATA

Study area

Lake Victoria, located between latitudes 0W200N–3W000S and

longitudes 31W400E–34W530E, is the largest freshwater lake in

Africa and is the second largest in the world (Figure 1). The

lake basin area is 194,000 km2 and the lake surface area is

about 68,800 km2 or 35% of the basin. The lake surface
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area is shared between Kenya (6%), Uganda (43%) and Tan-

zania (51%) while its basin includes parts of Burundi and

Rwanda. The altitude of the lake surface is about 1,135 m

above mean sea level (a.s.l.). The basin consists of a series

of stepped plateaus with an average elevation of 2,700 m

a.s.l. but rising to 4,000 m a.s.l. or more in the highland

areas. The lake is relatively shallow with an average depth

of 45 m and maximum depth of 92 m.

Although the total volume of catchment runoff into

Lake Victoria is small compared to direct rainfall on the

lake surface, it has a higher variability from year to year

and its impact on the water balance is significant (Piper

et al. ; Tate et al. ). However, estimating catchment

inflows to Lake Victoria is complicated by lack of consistent

and reliable measurements of stream flow and other data

(Kite ). Regular discharge measurements for the rivers

that flow into Lake Victoria are scarce and patchy. Of the

17 major tributaries providing inflow to Lake Victoria,

only five have been gauged for extended periods of time

(Yin & Nicholson ). These are Kagera, Nzoia, Yala,

Sondu and Gucha which have been estimated to account

for about 50% of the total catchment inflow. Kagera River

has been gauged since 1940 while the other four have

been gauged since 1956. The remaining rivers have been

gauged only since 1969. Since the 1980s, there has been a

significant drop in the frequency and quality of discharge

measurements. In some cases the discharge measurements

have been abandoned altogether.

Catchment runoff contributes about 20% of the inflow

into Lake Victoria with the rest being direct rainfall on the

lake surface (Sene ; Tate et al. ). The amounts

and timing of the flows in the rivers vary within the lake

basin and are influenced by variations in spatial and

temporal rainfall distribution as well as catchment charac-

teristics (Sutcliffe & Parks ; Tate et al. ). A

bimodal rainfall distribution is predominant in the basin

with the main rainfall season (also called the ‘long rains’)

occurring from March to May and a secondary rainfall

season (short rains) occurring from October to December

(Nicholson ; Conway et al. ; Kizza et al. ). How-

ever, the seasons are not fixed all across the basin and this

affects the timing and amounts of the flows from the differ-

ent tributaries and also accounts for the high variability in

catchment runoff compared to over-the-lake rainfall. The
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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northeastern tributaries have a prolonged rainy season

with considerable amounts of rainfall received in July and

August. This, coupled with the steep topography, results in

fast runoff and high flow volumes to Lake Victoria (Tate

et al. ). Kagera sub-basin receives high amounts of rain-

fall and runoff volume is high but the flow variability is

modified by storage in the many lakes and wetlands where

the evaporation losses are also significant. The southeastern

tributaries have lower rainfall and runoff, and this makes for

greater variability. The northwestern tributaries contribute

less runoff because of wetland losses.

Data

The data used for this study included climate data (rainfall,

potential evapotranspiration and air temperature) as well

as measured discharge values. A monthly time step was

used. Below is a description of the key features of the differ-

ent data types.

Climate data

The rainfall data were derived from the gridded monthly

dataset developed by Kizza et al. (). The dataset was

interpolated using the inverse distance weighting approach

from 315 point rainfall stations. The rainfall dataset covers

the period 1960–2004 while the data used for this study

covered the period 1967–2000 over which discharge

measurements were available. During the derivation of the

gridded rainfall dataset, it was noted that there was a large

variation in rain gauge density around Lake Victoria basin

which affects the accuracy and reliability of the interpolated

rainfall (Kizza et al. ). However, the 315 stations that

were used were selected from a database of more than

1,000 stations and went through a rigorous quality control

process to remove erroneous data and retain only those

stations that were deemed reliable and resulted in minimal

errors in the resultant dataset. The point rainfall density

varied considerably throughout Lake Victoria basin and

therefore the uncertainties in interpolated rainfall were

also expected to vary. The interpolated database had a

2 km square grid size. The gridded values were averaged

over each sub-basin to compute the monthly mean areal

rainfall values.
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Monthly potential evapotranspiration data were

obtained for 32 stations that were part of the monitoring net-

work used by the hydrometeorological survey project of

the World Meteorological Organization (WMO ). The

station values used in this study were estimated during the

WMO study using the Penman method (Penman ).

The areal long term mean monthly potential evapotranspira-

tion of each sub-basin were obtained using the Thiessen

Polygon method based on polygons of each sub-basin that

were derived from a 90 m digital elevation model (DEM)

of the lake basin. The temperature data were also estimated

using the Thiessen polygon method with 46 point stations

across the basin.

Discharge data

Data for 18 gauging stations were obtained in the form of

daily gauge heights and periodic discharge measurements

for each station. The quality control tests included tests for

data sufficiency and stability of the rating curves. For a

station to pass the data sufficiency test we set the minimum

length of daily gaugings to 4 years and the minimum number

of discharge measurements to 20 measurements in 3 years.

These restrictions were not ideal but they were selected

iteratively to ensure that the resultant sample was large

enough to support subsequent analysis. The requirement

for having a stable rating curve was aimed at ensuring that

only those stations with a clear relationship between gauge
Table 1 | Characteristics of the study sub-basins. Lake and swamp areas are expressed as perce

between points 10% and 85% along the main stream from the outlet. MAF is the mea

areal average over the basin and PET is the annual basin potential evapotranspiratio

Basin
Area
(km2)

MAF
(mm/
year)

MAR
(mm/
year)

PET (mm/
year)

Temp
(WC)

Lakes
area (%

Sio 1,275 236 1,490 1,593 22.9 –

Nzoia 12,630 269 1,315 1,616 18.5 –

Sondu 3,448 378 1,422 1,309 17.4 –

Gucha 6,616 189 1,383 1,483 21.4 –

Mara 13,497 98 1,239 1,724 20.3 –

Mbalang et 3,269 212 1,198 1,840 21.7 –

Duma 5,380 116 1,172 1,858 22.5 0.4

Magogo 3,273 165 1,007 1,935 22.5 2.4

Kagera-
Rusumo

30,696 228 1,130 1,197 18.8 1.2

s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
height and discharge were retained for analysis. This was

necessitated by the fact that historical information about

the stations were not available to facilitate an assessment

of the causes of rating curve instability and hence no correc-

tive measures could be carried out. At the end of the quality

control process, nine discharge stations, representing about

55% of the land area of Lake Victoria basin, were retained

for further analysis (Figure 1 and Table 1).
METHODS

The model and parameter estimation approach

WASMOD, a lumped conceptual rainfall-runoff model (Xu

et al. ; Xu ), was used in the current study. The

model is used for simulating streamflow from rainfall and

can be operated at different time scales. The concept of

the model is that the actual rainfall is split into a fraction

that evaporates and a fraction that is active rainfall and con-

tributes to the fast flow and the slow flow (‘base flow’). The

adopted WASMOD version has four parameters that control

potential evapotranspiration, actual evapotranspiration,

slow flow and fast flow (Table 2). Before rainfall contributes

to the soil storage as ‘active’ rainfall, a part is subtracted and

added to the loss by evapotranspiration (Xu ). The soil

water storage contributes to evapotranspiration et, to the

fast flow component ft and to the slow flow st. Parameter
ntages of each sub-basin’s area. The mean basin slope is expressed as the slope measured

n annual flow computed from gauge measurements, MAR is the mean annual rainfall as an

n

)
Swamp
area (%)

Mean Basin
Slope (%)

Mean Elevation
(m a.s.l.)

Number of years of
observed data available

– 1.9 1,254 24

0.1 3.9 1,898 9

– 5.5 2,039 18

0.2 4.1 1,603 16

2.7 3.8 1,725 16

6.4 1.6 1,466 6

5.2 1.5 1,466 4

6.5 1.1 1,206 4

4.0 9.3 1,679 9



Table 2 | WASMOD variables and their equations

Variable controlled Parameter (units) Equation

Potential evapotranspiration a1(
WC�1) ept ¼ 1þ a1 ct � cmð Þ½ �epm (1)

Actual evapotranspiration a2(–) et ¼ min ept 1� awt=ept
2

� �
;wt

h i
(2)

Slow flow a3(month�1) st ¼ a3 smt�1ð Þ2 (3)

Fast flow a4(mm�1 month) ft ¼ a4smt�1nt (4)

where epm is the monthly long term potential evapotranspiration; ct and cm are monthly mean temperature and long term mean
temperature, respectively; wt ¼ rt þ smt�1 is the available water; smt�1 is a available storage (non-negative); nt ¼ rt � ept 1� e�rt=ept

� �
is

the effective rainfall with rt as the rainfall in a given month.
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a1 is used to convert long term average monthly values to

actual values of monthly potential evapotranspiration and

can be eliminated from the model if potential evapotran-

spiration data are available or are calculated using other

methods. Parameter a2 determines the actual evapotran-

spiration that is an increasing function of potential

evapotranspiration and available water. Smaller values of

a2 result in high evaporation losses at all moisture states.

The slow flow parameter a3 controls the proportion of

runoff that appears as ‘base flow’. Higher values of a3 pro-

duce a greater proportion of ‘base flow’. Values are

expected to be higher in forest areas than in open fields

and in sandy than clayey soils. The fast flow parameter a4
increases with degree of urbanisation, average basin slope

and drainage density. Lower values are expected for catch-

ments dominated by forest. The inputs used for WASMOD

model in the current study included monthly values of

rainfall, temperature and mean monthly potential

evapotranspiration, which were readily available for the

catchments. Monthly runoff and other water balance

components were the outputs. The time period used for

this study was 1967–2000 of which the first 3 years (1967–

1969) were set aside as the warm-up period.

The applicability of WASMOD to the region was

assessed in an earlier study by testing it on Nzoia sub-

basin (Kizza et al. ), one of the catchments in the current

study. In that study, WASMOD was shown to produce

acceptable results for the sub-basin. Model assessment for

Nzoia study was carried out within the GLUE (generalised

likelihood uncertainty estimation) framework (Beven &

Binley ; Beven ) in order to carry out parameter

estimation using set performance criteria and assess predic-

tive uncertainty for the Nzoia sub-basin using WASMOD
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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model. Performance was assessed using the Nash–Sutcliffe

coefficient (Nash & Sutcliffe ), Average Relative Inter-

val Length (Jin et al. ) and the percentage of

observations bracketed by simulations. The Nash–Sutcliffe

efficiency (NS) was computed from log-transformations of

both measured and simulated flow. For a NS threshold of

0.6, the percentage of observations bracketed by simulations

was 74%, the average relative interval length was 0.93 while

the maximum NS value was 0.87. The residuals were

shown to be homoscedastic, normally distributed and

nearly independent. When the NS threshold was increased

to 0.8, percentage of observations bracketed by simulations

decreased to 54% with an improvement of average relative

interval length to 0.5. As such the model was shown to be a

viable candidate for application in Lake Victoria basin.

In the current study, model assessment was carried out

for the nine selected sub-basins within a GLUE framework

(Beven ) following the same procedure as described in

(Kizza et al. ). GLUE is a methodology based on

Monte Carlo simulation for estimating the predictive uncer-

tainty associated with environmental models. For each

catchment, Monte Carlo simulations were carried out

using uniformly sampled parameter spaces. In uniform

sampling, the model simulation is reflected by the shape of

the response surface. Initial model runs were made to

select the feasible ranges for each parameter. These were

expected to be changing as flow generation characteristics

vary around Lake Victoria basin. In total, 400,000 model

runs were carried out for each catchment. The selection of

the number of model runs was done in tandem with con-

straining of the parameter ranges to ensure that the

parameter space was well sampled. All parameter sets that

resulted in NS values higher than 0 were retained for
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possible consideration as behavioural (having acceptable

performance) under calibration.

The behavioural threshold was selected such that the

percentage of observation contained within limits of the

simulations of the behavioural parameter sets (POBS) was

higher than 80%. The likelihood of parameter sets with a

NS value less than the behavioural threshold was set to

zero. The minimum number of parameter sets to include

in the behavioural set was set to 10% of the simulations

that had NS values higher than 0 while the maximum

number was set to 5,000. The requirement for minimum

number of parameter sets was to ensure that the sample

size was large enough for subsequent analysis. The require-

ment for maximum number of parameter sets was to take

into account the fact that, given the uncertainties in input,

model and discharge, it may not be possible to achieve the

POBS requirement of 80% for some basins. The NS value

corresponding to a POBS of 80% was taken as the behav-

ioural threshold in calibration. The parameter set that

resulted in maximum NS value for each sub-basin was

selected as representing the best model performance for

the sub-basin and was used for applying the proxy-basin

and global mean regionalisation methods. NS values were

converted into likelihoods by (i) rescaling them to ensure

that simulations that were considered un-acceptable were

given a likelihood of 0 and (ii) normalising to ensure that

the sum of all likelihoods was unity.

Regionalisation methods

Three regionalisation approaches tested on the study sub-

basins were namely the proxy basin method, the global

mean method, and the ensemble regionalisation method.

The methods were selected because of the small number

of study sub-basins which meant that detailed assessments

of parameter and catchment characteristics were unlikely

to be robust and could lead to misleading results.

Proxy basin method

The proxy-basin method is a two step approach to regionali-

sation whereby parameter transferability is first cross-

checked over two sub-basins in the region of interest

before direct application to ungauged basins in the same
s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
region (Jin et al. ). The method is based on the presump-

tion that, in a hydrologically and climatically homogeneous

region based on spatial proximity, one would expect the par-

ameters of basins in the region to be similar as climate and

catchment conditions only vary smoothly over space. A

proxy-basin test (Xu & Singh ) was carried out to exam-

ine the transferability of parameter values by calibrating

parameters on one basin and then validating them on the

other basins. Only if the proxy-basin tests gave acceptable

results would the model be considered to be geographically

transferable.

Global mean method

The rationale behind the global mean method is that, in

conceptual hydrological models, the physical attributes

of a catchment are represented by parameters and so the

average attributes are represented by mean parameters.

Three types of global mean were computed and applied

on each of the sub-basins by assuming that they are

ungauged. The first global mean method tested was the

computation of arithmetic mean value of each parameter

which assumes homogeneity in characteristics of the

sub-basins and would work best in situations where the

differences in individual parameter values do not vary

considerably across the region. The second method was

the computation of area weighted mean values that

takes into account the area of each sub-basin. The ration-

ale for this method is that sub-basins with a large area

contain more attribute information than small ones and

this should be highlighted in the averaging of parameters

( Jin et al. ). The third global mean method was the

computation of Thiessen weighted mean values aimed at

interpolating to take into account each sub-basin’s pos-

ition and density. This method is an attempt to account

for the variation of sub-basin attributes in space by

giving more weight to sub-basins in a regional center or

in sparse areas (with fewer gauged basins) compared to

sub-basins in a regional margin or in a dense area.

Ensemble regionalisation

In practice, many combinations of parameter values will

result in similar or equally acceptable model performance.



Table 3 | Maximum NS values and their associated parameter values. The parameter

units are shown in Table 2

Basin Max NS a1 × 10�2 a2 × 10�1 a3 × 10�4 a4 × 10�4

Sio 0.78 0.186 2.736 1.565 38.379

Nzoia 0.81 6.686 5.982 3.603 14.196

Sondu 0.83 13.911 3.820 12.398 24.952

Gucha 0.79 10.897 3.576 4.314 16.669

Mara 0.75 23.620 4.476 2.656 7.914

Mbalanget 0.77 32.761 8.438 0.247 2.391

Duma 0.76 30.785 3.576 0.549 47.622

Magogo 0.76 22.935 4.414 15.239 41.371

Kagera-Rusumo 0.70 2.765 8.842 0.110 0.146
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This is the equifinality problem (Seibert ; Beven &

Freer ; Wagener & Wheater ) and arises from

over-parameterisation of models, data limitations and

faults within the model and leads to high uncertainties

in the model predictions. As such, a single optimum par-

ameter set may not have the best transfer capability

during regionalisation studies (Buytaert & Beven ).

Therefore, this study also investigated the possibility that

other acceptable parameter sets for a given sub-basin

can have better transfer capabilities than the best perform-

ing parameter sets for each sub-basin as defined by the

parameter set having maximum NS. The goal was to test

the transfer properties of acceptable parameter sets

from one sub-basin to other sub-basins in the study

area. The following procedure was used for ensemble

regionalisation.

For each candidate sub-basin for parameter donation,

all behavioural parameter sets under calibration were

selected. The remaining eight sub-basins were then grouped

in terms of the closeness of their hydrological response to

the donor sub-basin. The grouping was carried out by

using the donor sub-basin parameter sets to simulate flow

in the rest of the sub-basins and organising them in des-

cending order of number of parameter sets that continue

to be behavioural. The regionalisation performance was

then tested by using the donor sub-basin parameter sets

to carry out simulations for the remaining sub-basins in

sequential order, starting with the most closely related

sub-basin. At each stage, the likelihood of parameter sets

that resulted in NS efficiencies less than the threshold

value were set to zero and such parameter sets were

dropped from subsequent steps. The process was continued

until the number of behavioural parameter sets dropped to

zero.

Success in ensemble regionalisation was based on the

number of sub-basins that could be simulated using the par-

ameter sets of a given donor sub-basin with acceptable

performance. Parameter sets that continued performing

well for most study sub-basins were said to be robust and

it was assumed that they would be more likely to perform

well when applied to ungauged basins. The minimum

number of sub-basins that had to be successfully simulated

was set to three for a given donor sub-basin’s parameter

set to be considered to be robust.
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RESULTS

Model performance

Visual and statistical comparisons were carried out to evalu-

ate the modelling results for the gauged sub-basins. Table 3

shows the maximum NS values for each sub-basin and

their associated parameter values. The lowest NS value

was 0.71 for Kagera-Rusumo and the highest was 0.83 for

Sondu. Generally a NS of 0.6 is considered as a threshold

for streamflow simulations (Moriasi et al. ). Therefore,

the model can be said to have a good performance in

Lake Victoria basin. In terms of variability of the parameter

sets having maximum NS over all sub-basins, the narrowest

range was in the range of values of parameter a2 that con-

trols actual evapotranspiration while the widest range was

in the values of parameter a3 that controls slow flow. The

minimum value of parameter a2 was 0.30 while the maxi-

mum was 0.9 giving a range of just 0.6 or a variation of

120% about the mean parameter value. On the other hand

the minimum value of parameter a3 was 1.1 × 10�5 while

the maximum value was 152.3 × 10�5 or a variation of

330% about the mean parameter value. It has been shown

in Kizza et al. () that for Nzoia sub-basin, WASMOD

is most sensitive to parameters a2, a3 and a4 and their speci-

fication is more important for model performance.

Therefore, similarity between these three parameters (a2,

a3 and a4) between any two sub-basins is a good first indi-

cator of the possibility for one sub-basin being a parameter

donor for another. While general inferences from Table 3



Figure 2 | Calibration results for three selected sub-basins in different parts of Lake

Victoria basin, namely: (a) Nzoia, (b) Mara and (c) Duma. The ‘best simulation’

is based on the parameter set having maximum NS.
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are hard, parameter a2 does not vary considerably between

the study sub-basins while parameters a1, a3 and a4 are

more variable and they are expected to be critical for the

success of any regionalisation scheme.

In terms of the percentage of observed flow bounded by

simulations (POBS), Nzoia and Mbalanget sub-basins had

the best performance with POBS values in excess of 90%

(Table 4). In terms of the threshold NS values, Sondu had

the best performance with an NS threshold of 0.69 while

Kagera-Rusumo did not perform very well. A lower threshold

NS value implies amore peaked variation of one ormore par-

ameter(s) while a lower POBS may indicate uncertainties in

the observed flow data. Only Sio sub-basin did not meet the

POBS requirement of 80% but a value of 79.4% for 5,000

parameter sets was considered good enough.

For visual comparison, Figure 2 shows the hydrographs

for both measured and simulated flow including the 90%

confidence interval of the simulated flow for three sub-

basins from different parts of Lake Victoria basin. For

each sub-basin, the 90% confidence interval was estimated

from the range of likelihood weighted simulations for each

time step based on the approach outlined in Beven &

Freer () and Kizza et al. (). The plots emphasise

the differences in flow generation in different parts of the

Lake Victoria basin from the wet and humid northeast (rep-

resented by Nzoia sub-basin), to the drier southeast

(represented by Duma sub-basin). In all cases, there was

good agreement between measured and simulated flows

for all sub-basins. The mean flows were quite well estimated
Table 4 | Model calibration results for the nine study sub-basins. POBS is the percentage

of observations bracketed by behavioural simulations. Threshold NS is the mini-

mum Nash–Sutcliffe value of the parameters included in the behavioural set

Basin POBS (%) Threshold NS Number of parameter sets

Sio 79.4 0.54 5000

Nzoia 94.1 0.55 4357

Sondu 85.0 0.69 4234

Gucha 83.7 0.58 2344

Mara 80.5 0.50 3712

Mbalanget 93.8 0.46 1948

Duma 81.8 0.51 2120

Magogo 80.0 0.58 1953

Kagera-Rusumo 80.0 0.44 1808

s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
while the low and high flows were sometimes poorly cap-

tured by the model though, in most cases, the measured

values fall within the confidence interval. The values of

measured flow that fall outside the 90% confidence interval

used here may reflect uncertainty sources that are not

directly dealt with in this study, but are also due to the con-

straint placed on the behavioural parameter sets of having at

least 80% of the observations bracketed by simulations. An

assessment was also carried on whether the model was

able to capture known significant hydrological events

within the Lake Victoria basin. Periods of anomalously

high rainfall have been documented in the Lake basin that

are driven by forcing mechanisms like El Niño/southern

oscillation, sea surface temperature anomalies, quasi bien-

nial oscillation and other factors (Nicholson ; Indeje

& Semazzi ; Indeje et al. ; Mistry & Conway

). El Niño years are usually associated with above

normal rainfall amounts in the short rainfall season of the
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Lake Victoria basin causing widespread flooding. Towards the

end of 1997 and early 1998, the region received extremely

high rainfall amounts that caused severe flooding of rivers

and also a rise in lake level. While the dataset used in this

study had no measured flows for 1997 and 1998, WASMOD

model was able to capture the high rainfall signal as extremely

high discharge for 1998 for all the study sub-basins (Table 5).
Figure 3 | Flow duration curves for observed and simulated flow. CI stands for confidence int

Table 5 | Simulated mean annual flows (1970–2000) for the study sub-basins compared to

simulations for 1998. All units are mm/year

Basin Mean 1998

Sio 224 340

Nzoia 287 436

Sondu 372 516

Gucha 191 468

Mara 97 318

Mbalanget 195 357

Duma 124 326

Magogo 161 421

Kagera-Rusumo 228 332

om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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The percentage increase in annual flow for 1998 over the

long term mean annual flow varied from 39% for Sio to

230% for Mara averaging slightly over 108% for all study

sub-basins. Other years of heavy rainfall include 1970,

1976, and 1989 and these signals were also captured in

most of the sub-basins.

An important requirement of any hydrological model is

the correct representation of the flow frequency which is

useful for many applications, including reservoir and lake

sedimentation studies, in-stream flow assessments and

flood frequency analysis (Castellarin et al. ). Streamflow

frequency is usually represented using a flow duration curve

(FDC) which provides the percentage of time (duration)

streamflow is exceeded over a historical period. The FDCs

for the study sub-basins were prepared by plotting simulated

and observed flow data against the fraction of time a given

flow amount was exceeded (Figure 3). There was a close

match between measured and simulated FDCs for most of

the sub-basins. The only significant exception was for

Nzoia where the high measured and simulated flows did

not match. In an earlier study by Kizza et al. (), this
erval. Note the different scales on the y-axes.
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problem for Nzoia was addressed by applying a log- trans-

formation to measured and simulated flows before

computing the NS measure. However, initial simulations

showed that log-transformation did not improve the simu-

lations of the rest of the basins. Additionally, uncertainties

in the medium to high flows were generally higher than

the uncertainties for the low flows. This is an expected fea-

ture of flow in the region since routine field measurements

are generally not carried out during high flow and flooding
Figure 4 | Comparison of simulated FDCs for the study sub-basins. For each sub-basin

the y-values were obtained by dividing the flow values by the mean of all flow

values for the sub-basin. For clarity, the legend entries are arranged in the

order of the respective plots as they appear in the figure close to the y-axis.

Table 6 | Proxy basin test results. The dashed fields mean that the model performance for th

Parameter donating basins
Proxy basins Sio Nzoia Sondu Gucha

Sio 0.06 0.33 0.65

Nzoia 0.33 0.65 0.36

Sondu 0.68 0.71 0.68

Gucha 0.71 – 0.27

Mara 0.49 – – 0.70

Mbalanget – 0.10 – –

Duma 0.16 – 0.13 0.36

Magogo – 0.50 0.40 –

Kagera-Rusumo – – – –

Average 0.47 0.34 0.36 0.55

Minimum 0.16 0.06 0.13 0.36

Maximum 0.71 0.71 0.65 0.70

s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
conditions and their estimation involves extrapolation of

the rating curve. For a direct comparison of the catchment

characteristics in terms of response of each sub-basin to

rainfall input, a single FDC for all study sub-basins was pre-

pared and is reproduced in Figure 4. Steep FDCs are

associated with a more peaky hydrograph while FDCs of

base flow-dominated rivers tend to be flatter (Wagener &

Wheater ). By this classification, the base-flow domi-

nated study sub-basins are Kagera-Rusumo, Mbalanget

and, to some extent, Nzoia while the rest have much smaller

base flow components. It was also noted that the steep FDCs

tend to intersect the x-axis meaning that they are dry some

months of the year. Figure 4 also shows a great diversity of

the flow regime in the Lake Victoria basin, which increases

the difficulty in parameter transfer study and partly results in

low accuracy in the regionalisation results in some cases as

described in the following section.
Proxy-basin method

The performance of transferring the various parameter

sets varied significantly in Lake Victoria basin (Table 6).

The NS from transferring the parameters of the northeast-

ern sub-basins of Sio, Nzoia, Sondu, Gucha and Mara

were the highest while the parameters of the southeastern

sub-basins of Mbalangeti, and Magogo showed limited

performance. Duma sub-basin also showed a good
at proxy basin was very poor, i.e. NS was less than 0 and was considered a failure

Mara Mbalanget Duma Magogo Kagera- Rusumo

0.51 – 0.37 – –

0.27 0.55 0.56 0.57 0.02

0.58 0.39 0.68 0.73 0.13

0.75 – 0.33 – –

– – – –

– – – –

0.41 – – –

– 0.24 0.02 –

– – – –

0.50 0.40 0.39 0.65 0.07

0.27 0.24 0.02 0.57 0.02

0.75 0.55 0.68 0.73 0.13
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performance as a donor. The parameters of Kagera at

Rusumo were very dissimilar compared with the other

parameters and their transferability was not possible.

The dissimilarity of the Kagera-Rusumo sub-basin with

other basins can be seen clearly from the flow duration

curves shown in Figure 4. Parameters from Mara sub-

basin provided the best transfer performance with four

proxy-basins giving NS performance measures of 0.4 and

above. Parameters for Sio and Gucha sub-basins per-

formed well for three proxy-basins while parameters for

Nzoia, Sondu and Magogo perfomed well for only two

proxy basins each. Parameters for Sio, Gucha, Mara and

Duma also produced the best mean performances in the

proxy basins with average NS values of above 0.5. An

assessment was also carried out on performance of each

proxy basin in terms of how many donor parameter sets

produced acceptable performance when applied to the

input of the proxy basin. Sondu sub-basin, having the

FDC in the middle of the wide ranges of nine FDCs

(Figure 4), performed best as it produced NS values of

above 0.4 with six of the donor parameter sets and an

average NS value of 0.57. This was followed by Nzoia

which produced acceptable performance with four donor

parameter sets producing NS values that were higher

than 0.4 but the average was only 0.41. Sio, Gucha,

Mara and Magogo produced acceptable performance

(NS> 0.4) for two parameter sets but the average NS

values were only 0.4, 0.51, 0.59 and 0.29, respectively.

In terms of forward and reverse transferability per-

formance, where parameter sets of one sub-basin are

tested on a sub-basin and vice versa, the best performance

was between Nzoia and Sondu and also between Gucha

and Mara which produced NS values higher than 0.7 for

the forward and reverse computations. However, it is

important to note that Nzoia is geographically adjacent

to Sondu and Gucha is also adjacent to Mara. Addition-

ally, other sub-basin pairs that are not adjacent to each

other also produced acceptable performances. These

included Sio and Gucha, Sio and Mara, Nzoia and

Magogo as well as Sondu and Magogo which all gave

NS values above 0.4 for the forward and reverse

computations.

Neglecting the results for Kagera-Rusumo, average effi-

ciency losses (EL), which is the difference between
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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calibration NS and proxy-basin NS, varied between 0.24

for Gucha and 0.44 for parameter sets of Nzoia and Mba-

langet. The minimum efficiency loss was 0.05 for the

parameter transfer between Mara and Gucha. Closely

related was an efficiency loss of 0.05 for Gucha when

using Mara parameters. This result points to a strong trans-

fer performance between the two sub-basins. Based on EL

values, the best performances were for parameter sets of

Sio, Gucha, Mara, Duma and Magogo for which average

EL values where less than 0.3, although Magogo par-

ameters only produced acceptable performance with two

sub-basins.

Global mean method

Results from modelling with the global mean of estimating

regional parameter sets (Table 7) showed that the best per-

formance was for the four northeastern sub-basins of Sio,

Nzoia, Sondu, Gucha and Mara with NS measures above

0.4 each for the arithmetic global mean estimation

method. There were slight variations in the results for

area-weighted and Thiessen interpolation methods but

the general performance variation was the same as that

of the arithmetic mean method. The parameter set for

Kagera-Rusumo was not used in the estimation of global

mean values for any of the three methods used as it was

very different from the rest and would bias the results.

The arithmetic mean method for computing global mean

performed slightly better with mean NS value of 0.48

compared to the area weighting and Thiessen interp-

olation methods which gave NS mean values of 0.41

and 0.47, respectively. This performance is also shown

in the estimates for efficiency losses that take the same

trend. The best performance of the global mean method

was for Nzoia basin with an NS value of 0.68 for the arith-

metic mean method. Nzoia also produced the lowest

efficiency loss at 0.14. For Nzoia, the NS values for the

other two methods were also high at 0.64 and 0.54 for

area-weighted and Thiessen interpolation methods,

respectively. In terms of station by station performance

for each of the three methods, the results were mixed.

The arithmetic mean method performed best for Sio and

Duma sub-basins. The Thiessen interpolation method per-

formed best for Nzoia, Sondu and Mbalanget sub-basins



Table 7 | NS and EL (efficiency loss) values from application of three global mean estimation methods. The NS values for Magogo sub-basin were less than 0 and are not reproduced here

Method for computing average

Arithmetic Area weighted Thiessen interpolated

Basin Calibration results (NS) NS EL NS EL NS EL

Sio 0.78 0.45 0.32 0.39 0.39 0.45 0.33

Nzoia 0.81 0.64 0.17 0.54 0.27 0.68 0.14

Sondu 0.83 0.61 0.22 0.51 0.32 0.64 0.19

Gucha 0.79 0.51 0.29 0.51 0.28 0.49 0.31

Mara 0.75 0.41 0.34 0.44 0.31 0.38 0.37

Mbalanget 0.77 0.32 0.45 0.13 0.64 0.33 0.44

Duma 0.76 0.39 0.37 0.34 0.42 0.36 0.40

Magogo 0.76 – – – – – –

Average 0.78 0.48 0.31 0.41 0.37 0.47 0.31
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while the area-weighted method performed best for Gucha

and Mara sub-basin.

Ensemble regionalisation

Table 8 shows the number of parameter sets from each basins

(acting as a donor) that continued performing well when

applied sequentially to other basins. All parameter sets that

resulted in likelihood values less than the set threshold were

dropped from the subsequent analysis stage. By producing

acceptable performance for five sub-basins, parameter sets

for Mara and Duma sub-basins had the best ensemble transfer

performance (Table 8). Nzoia, Sondu,Mbalanget andMagogo

parameter sets had low performance and produced acceptable

results for only two basins each. In terms of number of times a
Table 8 | Results of ensemble regionalisation for different parameter donor basins. The number

were carried on to the subsequent stage

Parameter donor basin Stage 1 Stage 2

Sio (5000) Sondu (4730) Gucha (2516)

Nzoia (4357) Sondu (4164) Magogo (1248)

Sondu (4234) Nzoia (198) Magogo (11)

Gucha (2344) Sondu (1895) Sio (826)

Mara (3712) Gucha (3473) Sondu (2912)

Mbalanget (1948) Nzoia (1875) Sondu (1443)

Duma (2120) Sondu (2091) Nzoia (1246)

Magogo (1953) Sondu (1184) Nzoia (435)

s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
given basin performs well given the donor basin, both Nzoia

and Sondu had the highest number of times over all stages

at seven, followed by Gucha and Duma at two times, while

Magogo had the lowest at only two. Sondu sub-basin was

the most closely related to the different parameter donor

sub-basins for stage 1 application with close relationship to

five of the eight donors while Nzoia (two donors) and

Gucha (one donor) were the other two.

For hydrologically homogeneous basins, the response

surface should not be greatly modified during regionalisa-

tion. This modification was checked by computing the

percentage reduction in number of parameter sets at

each stage. For stage 1, Duma had the lowest loss of par-

ameter sets in transferring to Sondu at 1% of all

calibration parameter sets not meeting the behavioural
of parameter sets that were acceptable at each stage are shown in brackets and only these

Stage 3 Stage 4 Stage 5

Duma (438) Mara (51) –

– – –

– – –

Mara (139) Duma (5) –

Sio (1435) Duma (245) Nzoia (40)

– – –

Sio (434) Gucha (267) Mara (5)

– – –
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criteria while Sondu had the highest loss in transferring to

Nzoia at 95%. Other donor basins that had low losses of

parameter sets at stage 1 included Nzoia (4%), Mbalanget

(4%), Sio (5%) and Mara (6%). Generally, the parameter

losses at stage 1 were low, averaging 22%. At stage 2,

Mara had the lowest loss in number of parameter sets at

16% of all stage 1 parameter sets not meeting the behav-

ioural criteria while Sondu had the highest loss at 95%.

The average loss of parameter sets at stage 2 was 51%

while the losses for stages 3, 4 and 5 were 85%, 77%

and 95%, respectively. The modification of Mara sub-

basin parameter distributions for the different regionalisa-

tion stages are shown in Figure 5 as projections of the

weighted and rescaled likelihood functions onto single

parameter axes. In addition to the reduction in number

of parameter sets from one stage to the next, it can be

seen that the distributions become more peaky. In

addition, the parameter values having maximum likeli-

hood keep on changing from one stage to the next and

the widths on the x-axes keep on narrowing.
Figure 5 | Dotty plots showing the posterior parameter sets for the selected likelihood function

and the subsequent rows represent the continued performance for the different sta

the next regionalisation step.
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DISCUSSION

Three different regionalisation approaches were applied to

nine sub-basins in Lake Victoria basin. Local calibration

for each of the sub-basins was carried out with WASMOD

model within the GLUE framework. The regionalisation

approaches were all based on transfer of locally calibrated

parameter sets to ‘ungauged’ sub-basins. Regionalisation per-

formance between the sub-basins was assessed using the NS

likelihoods and visual inspection of the resulting FDCs. For

regionalisation methods to be successful it is necessary that:

(1) the number of free parameters should be limited so that

the physical meaning for each parameter is maintained; (2)

if the model has many parameters, a sensitivity study is

needed so that the least sensitive parameters can be fixed

using the knowledge about the model and the study

region; and (3) the geographic and climatic conditions of

the study region are similar (Xu ). The proxy-basin

method was applied by selecting the parameter set having

maximum NS for each sub-basin and using the parameter
as projections onto single parameter axes. The parameter set donor basin is Mara (top row)

ges of regionalisation. For each stage, only the acceptable parameter sets are retained for
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set to simulate flow in the remaining eight sub-basins. The

global mean method was applied by computing a mean par-

ameter set using three different methods namely; arithmetic

mean, area-weighted mean and Thiessen interpolated mean.

The third method was one that recognises the existence of

equifinality on model prediction whereby many different

parameter sets can result in modelling results that are

almost equally as good. This ensemble regionalisation

approach was applied by using all behavioural parameter

sets of one basin at a time (the donor basin) to simulate

flow in the remaining sub-basins in a sequential order. The

parameter sets that continued giving acceptable results for

most of the sub-basins were considered as robust and it

was postulated that they could possibly continue performing

robustly when applied to ungauged sub-basins.

Results showed varying degrees of similarity between

the sub-basins. Kagera-Rusumo sub-basin was the most dis-

similar to the others and produced no useful results for

any of the methods. The poor performance of Kagera-

Rusumo sub-basin for all regionalisation methods was

noted to be because of its different hydrological regime com-

pared to the other sub-basins. The flow in Kagera sub-basin

is considerably attenuated by the numerous lakes and

swamps. Before the Rusumo gauging station, Kagera River

flows through more than 20 lakes with a total surface area

in excess of 367 km2 while swamps cover an extra

1,237 km2 which provide substantial storage thus changing

the flow timing and amount at the exit (Table 1).

For the proxy-basin method, parameters of the north-

eastern sub-basins of Sio, Nzoia, Sondu, Gucha and Mara

provided better transfer capability than the southeastern

sub-basins of Mbalanget and Magogo. The performance of

Duma sub-basin as a parameter donor was also good. As

such the northeastern sub-basins can generally be said to

be hydrologically similar and their parameter sets can be

used for ungauged sub-basins in this region. However, the

low levels of parameter transferability for the southeastern

sub-basins may be due to deficiencies in input and cali-

bration data which affect the identifiability of parameters.

As an example of differences in data quality, the south east-

ern sub-basins had an average of only 6 years of observed

discharge for calibration compared to 18 years for the

north eastern sub-basins (see Table 1). This pattern of per-

formance was also reflected in the results of global mean
s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
method where the northeastern sub-basins outperformed

the southeastern sub-basins. The arithmetic mean method

of global mean estimation was slightly better than the area

weighting and Thiessen interpolation methods. In average

terms, the global mean method was better than the proxy

basin method.

All global mean estimation methods resulted in seven of

the study sub-basins having NS coefficients of 0.3 and above

while the best performing parameter set for proxy basin

method was that of Gucha sub-basin which produced accep-

table performance for five. This was a surprising result,

given the generally poor performance of global mean

method in some other studies (Merz & Blöschl ; Para-

jka et al. ). However, Jin et al. () found that the

performances of global mean and proxy-basin regionalisa-

tion methods where quite similar when applied to

Dongjiang Basin in southern China. The differences in regio-

nalisation performance can also be explained in terms of the

differences in sub-basin flow duration curves (Figure 4).

Mbalanget and Kagera-Rusumo sub-basins had the most dis-

similar flow duration curves and also showed poor

regionalisation performance. The Nzoia and Magogo sub-

basins also showed limited performance as parameter

donor basins. These observations suggest that catchment

heterogeneity may have been partially responsible for the

cases where regionalisation did not perform well. However,

owing to the limited sample size, statistical homogeneity

tests could not be carried out. In addition, the problems of

limited availability and quality of data in the Lake Victoria

basin were apparent in the study.

In terms of the regionalised flow duration curves, most

of the measured flow FDCs were well produced by the regio-

nalisation methods as shown by the generally good

reproduction of the shapes of the measured flow FDCs

(Figure 6). The regionalisation approaches generally resulted

in under-estimation of the high flows and over-estimation of

the lower flows due to the effect of averaging in parameter

values and also due to degradation in performance. The

impact of this over- and under-estimation was more pro-

nounced for the global mean method for which the effect

of averaging was more pronounced. Figure 7 shows the

measured, calibrated and regionalised mean monthly flow

estimates, including the areal rainfall and the calibrated

actual evapotranspiration estimates. Similar results are



Figure 6 | Regionalised flow duration curves together with flow duration curves for measured and calibrated flow for five selected sub-basins. Proxy basin and ensemble results are based

on transferring Duma parameter sets. Global mean estimates are based on the arithmetic mean of all parameter sets.
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summarised as mean annual flows in Table 9. All methods

were able to reproduce the mean monthly variations and

differences were only in flow volumes. From Table 9, the

percentage departures was estimated as the difference

between estimated and observed mean annual flow for

each regionalisation method as a ratio of the mean observed

value.

Based on mean of these departures over the five basins

shown in Table 9, the ensemble regionalisation method per-

formed best with an average departure of 21% from the

observed mean annual flows compared to local calibration

results that had a departure of 5%. The mean departures

for proxy-basin and global mean methods were 23% and

26%, respectively. The ensemble regionalisation method

provides the possibility to consider parameter uncertainty

in the regionalisation. Alternative ensemble regionalisation

approaches have been used in the past with a similar aim

of being able to account for uncertainties in parameters or

other uncertainties. Buytaert & Beven () outlined an

approach how to transform model parameters between a

gauged and an ungauged catchment using an iterative pro-

cess, in which a model structure was applied successively

to gauged catchments. In the study, they generated par-

ameters for a given donor catchment and then used the
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf

er 2018
model ensemble to predict the discharge of the other catch-

ments, after applying a stochastic parameter transformation

to account for the uncertainty in the model migration. The

parameter transformation was then evaluated and improved

before further application. Using a case study in the Ecua-

dorian Andes, they showed that accurate predictions could

be made for predicted basins and they could also gain

knowledge about model behaviour and potential model

limitations.

McIntyre et al. () applied an approach to regiona-

lisation of conceptual rainfall-runoff models using

ensemble modelling and model averaging to 127 catch-

ments in the United Kingdom. They found that using the

parameters of the 10 gauged catchments most similar to

the ungauged catchment provided generally the best

results and performed significantly better than the

regression method, especially for predicting low flows.

They also noted that the ensemble of candidate models

provided an indication of uncertainty in ungauged catch-

ment predictions, although this was not a robust

estimate of possible flow ranges, and frequently failed to

encompass flow peaks. Owing to the smaller dataset

used in the current study, the comparatively better per-

formance of ensemble regionalisation is regarded as a



Table 9 | Mean annual flow (mm/year) estimates for the three regionalisation methods compared with estimates from local calibration. Proxy basin results are based on the parameter set

for Gucha sub-basin. The differences between the calibration and regionalisation mean estimates and the measured flow are shown in brackets

Sub-basin Measured Local calibration Proxy basin Global mean Ensemble method

Duma 116 124 (7%) 124 (7%) 150 (30%) 113 (1%)

Sondu 378 371 (1%) 350 (7%) 375 (0%) 331 (12%)

Nzoia 269 287 (6%) 209 (22%) 236 (11%) 192 (28%)

Sio 236 223 (5%) 307 (30%) 333 (41%) 283 (20%)

Gucha 189 190 (0%) 256 (35%) 284 (50%) 235 (24%)

Mean departure from
measured flow

3% 23% 26% 21%

Figure 7 | The mean monthly flow estimates for Sio sub-basin (above) which had the best performance for global mean method and Mara sub-basin (below) which had the best per-

formance when the calibrated Duma sub-basin parameters were used. Evaporation values are calibration estimates.
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good indication of the strength of such methods over tra-

ditional regionalisation approaches. The ensemble

regionalisation method used in the current study is a simi-

larity based method that involves transferring all robust
s://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
parameter sets from the donor basin to ungauged basins,

without the need to make assumptions about the relation-

ship between model parameters and catchment

characteristics. Other studies have also found similarity
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based methods better to be better than regression methods

(Kokkonen et al. ; Parajka et al. ; Hundecha

et al. ).
CONCLUSIONS

From the above analysis, the following conclusions are perti-

nent. Application of WASMOD within a GLUE framework

for modelling the Lake Victoria sub-basins produced good

results withmodel performances of above 0.7 for theNS coef-

ficient and also in terms of reproduction of the observed flow

duration curves of observations.

The selected regionalisation approaches produced

mixed results with acceptable performance in some parts

of the Lake Victoria basin while the performance was

poor in other parts. In particular, sub-basins in the north-

eastern part of the basin had generally good performance

while sub-basins in the southeast did not generally produce

good performance. The reason for this was partly due to

variations in data quality but could also be attributed to vari-

ations in climate and catchment characteristics. The

relatively good performance of the global mean method

was noted as applying it would simplify the estimation of

flow in ungauged sub-basins.

Use of area weighted and Thiessen polygon methods

instead of arithmetic means did not significantly improve

on the results of global mean method. This may be due to

the limited number of sub-basins considered in this study

but may also be due to an inherent feature of the basin

where parameter values of WASMOD vary smoothly over

the basin.

The study emphasises the fact that limitations in data

can seriously constrain any efforts in regionalisation model-

ling. Collection of additional data in the Lake Victoria basin

sub-basins would be very helpful as more advanced regiona-

lisation techniques can then be tested.

The acceptance of equifinality by considering parameter

uncertainty in the regionalisation process can result in the

identification of parameter sets with better transferability

characteristics and also the estimation of conditional confi-

dence intervals. The regionalisation approaches that were

tested in this study could be useful for testing other models

that are intended for use under similar conditions.
om https://iwaponline.com/hr/article-pdf/44/5/789/370515/789.pdf
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Additional testing of the models would be necessary to

demonstrate their applicability.
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