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CONCAVE SIDE OF BLADE AT SECTION A-A" 1/t" 

F I G . 1 8 C O N C A V E S I D E OF B L A D E AT SECTION " A - A " 

(a) Experimental corrections to the tool will still be necessary 
to compensate for local and end effects, as well as for twist, etc. 

(b) The difference between the high and low curves in Fig. 17 is 
not appreciable. 

(c) The lion's share of the spring-back correction is ac-
complished quicklj' and cheaply which would otherwise be an 
unpleasant cut-and-try process. 

Finally, it can be seen that these results are limited to 
two-dimensional problems and that they can be readily ex-
tended: 

(а) To predict failure during forming. 
(б) To predict spring back during stretch-forming operations. 

Discussion 
M. E. C I E S L I C K I . 4 In Fig. 1 0 of the paper the values used for 

S and E do not correspond to the data used for design in the Jet 
Engine Department of General Electric. We use S — 6 2 , 0 0 0 

and E = 35.3 X 106. Using these values, the values of (RS)/{Et) 
will be reduced by 25 per cent. This would put the theoretical 
curve somewhat below the experimental points plotted. 

S . H. C R A N D A L L . 5 In presenting extensive test data for large 
spring backs the author has made a valuable contribution. He 

shows that in spite of the many complicating factors in sheet-
metal forming the data correlate remarkably well with a simpli-
fied version of Schroeder's3 theory. 

Regarding this theory the writer would like to make two sug-
gestions. First, in the elastic spring back of a curved sheet the 
sheet is bending as a plate rather than as a beam and hence the 
plate stiffness should be used instead of the beam stiffness. When 
the author's analysis is repeated on the plate basis the only dif-
ference in the final equation is that the factor (RS)/{Et) is re-
placed by RS{ 1 — V^/Et where 77 is Poisson's ratio. For most 
metals this correction is of the order of 10 per cent. 

The calculations in both Schroeder's and the author's analj-ses 
can be simplified by taking advantage of the fact that the spring 
back is elastic. It is only necessary to obtain the bending moment 
M which exists across the section when the sheet is in the tool. 
The spring back is then just the result of the elastic change in 
curvature clue to an equal and opposite il/. Thus 

1 
R' 

1 12/1/ 12 M 
o r ^ r r (1 — vJ) Et3 Et3 
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according to whether beam or plate theory is used. 
The difference between Schroeder's and the author's analyses 

lies in the assumption of the shape of the stress distribution mak-
ing up the bending moment in the tool. The author assumes (a) 
a fiat-topped yield for all metals whereas Schroeder would use 
(6) the actual stress-strain curve for each material. The advan-
tage of (a) is that it permits all materials to be represented on a 
single nondimensional chart. In any particular case where good 
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IF) 
T R A N S A C T I O N S O F T H E A S M E 

stress-strain data were available the labor of going to (b) would 
not be excessive. 

M. F. SPOTTS.7 The author has performed a useful service in 
presenting an equation for the first approximation of the die 
radius R when the final radius of curvature r is specified for a 
formed metal part. Considering the simplified nature of the 
assumed stress-strain curve, the experimental check with the re-
sults of the equation is very good indeed. 

It might be mentioned however that the equation can be ob-
tained without the need of integration in the following manner. 
In accordance with the assumed stress-strain curve, the stress dis-
tribution over a cross section of the material in the die is shown 
as O-A-B in Fig. 19(^4), herewith. Resultant forces and moment 

JL 

t Width, b bt$l SF 

° 'Neutral surface 

5 ' 
(B) 

(D) 

FIG. 19 

arms for the triangular and rectangular stress distributions are 
indicated. The bending moment M for the cross section then is 

- bSuX„ - x„ + 

(3(2 — 4 A V ) . [ 1 ] = hA 
12 

The elementary beam equation S = EX/R is valid for the 
elastic range. For point A in Fig. 19 this becomes 

= 
EX_y 

R [2] 

Substitution into Equation [1 ] gives 

M 
EI ' 

3 — — 4 ( — 
t m 

[3] 

where I = bt3/12. 
When the part is removed from the die, moments M are re-

leased. This is equivalent to superposing the elastic stress dis-
tribution of Fig. 19(B) for which 

7 Professor of Mechanical Engineering, Northwestern University, 
Evanston, 111. M e m . A S M E . 
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where l /r0 is the change in curvature resulting from the release of 
moments M. 

The final curvature 

1 
R 

1 
n> R 

M_ 
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7 - i - i b x f - i 7 - ) ] 
Substitution for X v from Equation [2] gives 

[4] 

[5] 

This is the author's equation which permits die radius R to be 
calculated. 

The foregoing result also can be obtained from consideration 
of the stress-strain diagram of Fig. 19(C). Elementary beam 
equation e = X/R is valid for both elastic and plastic deforma-
tion. Maximum elongations for upper and lower surfaces when 
the material is in the die is given by 

[6] 
~ 2R 

Superposition of stress S' upon release from the die gives an 
elongation on the surface of S'/E in the opposite direction. The 
final elongation ef for the top surface is 

«/ = 2 R E [7] 

Stresses S' produce the moment 

bt S' t_ 
' 3 

.1/ 
bt2 S' 

4 3 6 

After substitution of Equation [1] this becomes 

" - f t " ' ? ) - [8] 

The foregoing, together with the value of 1/R from Equation 
[2], should now be substituted into Equation [7] 

J_ 
2 EX — — ( z — 4 — 

2E\ tl J 

I* 
2 E X „ t' 

[9] 

Equation [6], as applied to the material after removal from the 
die, becomes 

= 2r 
[10] 

After Equation [9 J is substituted, the result can be easily reduced 
to Equation [5], Residual stresses in the material are illustrated 
by Fig. 19(£). 

AUTHOR'S CLOSURE 

Professor Spotts has kindly added a more geometrical approach 
to the mathematical derivation which always lends clarity and 
versatility. 

Professor Crandall also has contributed an elegant derivation. 
As was pointed out by other discussions, there is nothing novel 
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in the theory. Rather, it is the purpose of this paper to show a 
simple method for plotting experimental data and thus making it 
generally useful. In addition, metals are not produced with 
sufficient consistency to make a high degree of precision in 
spring-back prediction possible. Thus the appreciable addi-
tional labor of resorting to stress-strain diagram integration is 
probably not worth while. 

The author believes that practical application of this method 
has been delayed by the complication of previous methods and 
hopes that the foregoing simplifications will prove of use to in-
dustry. 

In view of the interest shown by manufacturers of coil springs, 
Professor Crandall has also co-operated with the author in de-
riving a theoretical spring-back formula for round bars and wires. 
The same basic assumptions have been made. In addition 

D = cross section at diameter of wire 

Then: — = 1 - — sin"1 (2K) - — ( 5 - 8 / C ! ) V ( l - 4 K * ) 
r 7T 37T 

This formula gives a curve similar to the theoretical curve of 
Fig. 5 and is plotted in Fig. 20. 

It is regretted that no experimental data are yet available. 
Hence this formula presents only a skeleton on which test data 
can be accumulated and a useful empirical curve drawn. 
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