Corneal Herpes Simplex Virus Type 1 Superinfection in Patients with Recrudescent Herpetic Keratitis

Lies Remeijer,1 Jeroen Maertzdorf,2 Johannes Buitenwerf,3 Albert D. M. E. Osterhaus,2 and Georges M. G. M. Verjans1,2

PURPOSE. Herpetic keratitis is a common sequel of a corneal infection with herpes simplex virus (HSV)-1. Recrudescent herpetic keratitis (RHK) may result in irreversible damage to the cornea. Recurrences may be caused by reactivation of endogenous HSV-1 or reinfection with exogenous HSV-1. The objective of this study was to determine the incidence and risk factors involved of HSV-1 superinfection in patients with RHK.

METHODS. From 30 patients with RHK, sequential corneal HSV-1 isolates were genotyped by PCR amplification of the hypervariable regions located within the HSV-1 genes US10 and US12. The clinical data from the patients obtained retrospectively were: ophthalmologic history, clinical picture during recurrences, number and time points of penetrating keratoplasty (PKP), and steroid or acyclovir treatment.

RESULTS. Whereas the sequential corneal HSV-1 isolates of 19 (63%) of 30 patients had the same genotype (designated as group 1), the sequential isolates of 11 patients (37%) were genetically different (designated as group 2). Among the clinical data analyzed, only the time point of PKP was significantly different between the patient groups. Although no patients in group 1 had undergone transplantation between samplings, 4 of 11 patients in group 2 underwent PKP during the inter-recurrence period in the same eye from which the corneal HSV-1 isolates were obtained.

CONCLUSIONS. The data demonstrate that RHK is frequently associated with corneal reinfection with a different HSV-1 strain and suggest that PKP is a risk factor for corneal HSV-1 superinfection. (Invest Ophthalmol Vis Sci. 2002;43:358–363)

HERPES SIMPLEX VIRUS (HSV) infections may elicit a variety of serious diseases in humans, including chronic herpetic keratitis.1,2 A hallmark of HSV and other neurotropic herpes viruses is their ability to establish latency in sensory nerve ganglia of the host.3 Despite the induction of an acquired state of immunity after primary HSV infection, recrudescent herpetic lesions are often observed.4 Patients who have had corneal HSV-1 infection risk recurrent corneal disease throughout life. Particularly prolonged or recurrent episodes of herpetic keratitis can result in decreased vision or blindness due to the development of herpetic stromal keratitis (HSK).2,3

Recrudescent HSV infections are thought to result from reactivation of the HSV strain acquired during primary infection.4,5 However, reinfection with a new HSV strain (i.e., superinfection) at the site of primary infection has also been documented.6,7 The route or mode of HSV superinfection and its clinical consequences remain enigmatic: Genetically different HSV strains have been shown to induce different types of ocular lesions.8 Furthermore, newly acquired herpetic keratitis may develop after penetrating keratoplasty (PKP) in patients who undergo transplantation for reasons unrelated to HSV infection, suggesting the possibility of HSV-1 transmission through cornea transplantation.9 These issues underline the clinical importance of knowing whether recurrent corneal HSV-1 infections are caused by reactivation of latent virus or superinfection with a different virus strain. Molecular analyses of corneal HSV-1 isolates may allow distinction between both options.

The genome of HSV-1 consists of a unique long (UL) and a unique short (US) component, each of which is flanked by a pair of oppositely oriented repeat elements. Several hypervariable regions have been identified in the HSV-1 genome. These regions encompass unique tandemly repeated sequences, insertions (Re) that vary in copy number and nucleotide sequences (Fig. 1).1,10,11 Generally, two types of restriction fragment length polymorphism (RFLP) analyses are used to differentiate HSV-1 isolates. One type is the variation due mostly to a gain or loss of a restriction enzyme cleavage site. The other appears as variation in length of cleaved fragments derived from Re-containing genomic HSV-1 regions.11 Among the eight Re regions described for HSV-1, ReIV and -VIII (both located within the introns of genes US10 and US12) and ReVII (located within the protein coding region of genes US10 and US11) have been shown to remain stable during in vitro culture and have been used as sensitive and reliable markers to differentiate HSV-1 strains.12–15

We have recently developed a PCR method, based on the stability and strain-to-strain differences of ReIV, -VII, and -VIII that has facilitated the differentiation of up to 92% of unrelated HSV-1 strains.12,15 The purpose of the present study was to determine the incidence and risk factors involved in corneal HSV-1 superinfection in patients with recrudescent herpetic keratitis (RHK).

MATERIALS AND METHODS

Patients and Clinical Samples

Corneal swab specimens were obtained for diagnostic reasons from suspected herpetic corneal lesions and were used to inoculate human embryonic lung fibroblasts. Virus was harvested when approximately 75% of the monolayer showed cytopathic effect and was subsequently typed for HSV-1 or -2 by immunocytoology and PCR.13 Serial samples from 30 immunocompetent patients with recurrent corneal HSV infections were found in a databank of 408 frozen corneal HSV-1 cultures collected since 1980 at the Rotterdam Eye Hospital (Rotterdam, The Netherlands). The clinical items scored retrospectively were anatomic location (i.e., left or right eye), previous history of ocular disease, clinical picture at presentation of each recurrence, therapy regimen...
Figure 1. Map of the HSV-1 genome including the location and sequences of the Re regions tested. (A) The prototypic HSV-1 genome encompasses the covalently linked components L and S. Each component consists of unique sequences (UL and US) bracketed by inverted repeat sequences (TR<sub>L</sub> and TR<sub>S</sub>) that are repeated directly at the termini of the genome and located at the L-S junction. The enlargement of the S component shows the 5′→3′ orientations of mRNA species as horizontal arrows with introns shown as V-shaped indents. Protein-coding regions are shown as open boxes. Vertical arrows indicate locations of Re regions, and Roman numerals indicate their locations as designated previously. 10,12. (B) Re-specific sequences have been described previously. 10,12 ReIV exists as two forms that differ from each other in a single residue. 10

Genotypic Analyses of Corneal HSV-1 Isolates

Genotypic analyses of the viral strains were performed by amplification of the hypervariable regions within the HSV-1 genes US1, US10/11, and US12. This method is based on strain-to-strain differences in the number of Re and point mutations within these hypervariable genomic regions. 10,12,15 DNA was extracted from the primary corneal HSV-1 cultures, lysed in a guanidine isothiocyanate buffer using a silica solution (Celite; Jansen Chemika, Beers, Belgium), as described previously. 15 The PCR primers and conditions for amplifying and detecting genomic regions of the genes US1, US10/11, and US12, performed on the corneal HSV-1 isolates are summarized in Table 1. As an example, the size fractionation and Southern blot analyses of the US1- and US12-specific amplicons obtained from the sequential samples of patients 1 through 5 and 20 through 24 are shown in Figure 2. The sequential corneal HSV-1 isolates of 19 (63%) of the 30 patients and 11 (37%) of the 30 patients showed either identical (patients 1–19; designated patient group 1) or different genotypes (patients 20–30; designated patient group 2), respectively (Table 1). The data suggest that more than one third of the corneas of the patients with RHK were superinfected with a different HSV-1 strain. In the case of patient 30, the newly acquired HSV-1 strain was cultured pending two post PKP recurrences. This suggests that the newly acquired HSV-1 strain had colonized the recipient. Combining the results of the three amplification genomic regions showed that the majority of the distinguishable HSV-1 isolates displayed unique combinations of amplicons (Table 1).

Statistical Analyses

The statistical evaluation of the results was performed using the Fisher exact test. Results were considered statistically significant at P < 0.05.

RESULTS

Patients’ Characteristics and Genotypic Analyses of Sequential Corneal HSV-1 Isolates

The group of 30 patients with RHK included in this study consisted of 13 women and 17 men (mean age, 58.1 years; range, 17–78). From each patient, two (n = 25) or three (n = 4) sequential corneal HSV-1 isolates were obtained (mean time interval, 29.8 months; range, 0–170). Patient 22 had bilateral herpetic keratitis (Table 1).

To differentiate whether RHK is due to reactivation of latent HSV-1 or superinfection with another HSV-1 strain, the sequential corneal HSV-1 isolates of the patients with RHK were genotyped using a recently developed PCR-based DNA fingerprint assay. 15 The results of the PCR analyses, on the hypervariable regions of the genes US1, US10/11, and US12, performed on the corneal HSV-1 isolates are summarized in Table 1. As an example, the size fractionation and Southern blot analyses of the US1- and US12-specific amplicons obtained from the sequential samples of patients 1 through 5 and 20 through 24 are shown in Figure 2. The sequential corneal HSV-1 isolates of 19 (63%) of the 30 patients and 11 (37%) of the 30 patients showed either identical (patients 1–19; designated patient group 1) or different genotypes (patients 20–30; designated patient group 2), respectively (Table 1). The data suggest that more than one third of the corneas of the patients with RHK were superinfected with a different HSV-1 strain. In the case of patient 30, the newly acquired HSV-1 strain was cultured pending two post PKP recurrences. This suggests that the newly acquired HSV-1 strain had colonized the recipient. Combining the results of the three amplified genomic regions showed that the majority of the distinguishable HSV-1 isolates displayed unique combinations of amplicons (Table 1).

In the case of patient 22, the data indicated that the bilateral herpetic keratitis was due to infections with different HSV-1 strains in either cornea. Patient 30 had two different HSV-1 strains identified. In the third episode sampled, the strain identified during the second recurrence was isolated (Table 1).

Comparison of Clinical Characteristics of Patients with RHK in Patient Groups 1 and 2

Compared with previous reports on patients with RHK, 2,9 our cohort consisted mainly of patients with severe entities of
360 Remeiher et al.

**IOVS, February 2002, Vol. 43, No. 2**

**TABLE 1. Patients’ Characteristics and Genetic Characterization of Sequential Corneal HSV-1 Isolates from Patients with RHK**

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Eye</th>
<th>US10/11 Region</th>
<th>US1 Region</th>
<th>US12 Region</th>
<th>Months between HSV-1 Isolates†</th>
<th>Eye Difference‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a  b  c</td>
<td>a  b  c</td>
<td>a  b  c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>17</td>
<td></td>
<td>215 215</td>
<td>—</td>
<td>—</td>
<td>295 295 240 240</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>34</td>
<td></td>
<td>220 220</td>
<td>—</td>
<td>—</td>
<td>320 320 305 305</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>64</td>
<td></td>
<td>215 215</td>
<td>—</td>
<td>—</td>
<td>280 280 220 220</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>54</td>
<td></td>
<td>225 225</td>
<td>—</td>
<td>—</td>
<td>280 280 260 260</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>44</td>
<td></td>
<td>225 225 225</td>
<td>—</td>
<td>—</td>
<td>420 420 270 270</td>
<td>56 3</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>59</td>
<td></td>
<td>215 215 215</td>
<td>270 270</td>
<td>—</td>
<td>370 370 370 8 11</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>39</td>
<td></td>
<td>215 215</td>
<td>—</td>
<td>—</td>
<td>280 280 270 270</td>
<td>170</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>72</td>
<td></td>
<td>220 220</td>
<td>—</td>
<td>—</td>
<td>410 410 220 220</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>74</td>
<td></td>
<td>225 225</td>
<td>—</td>
<td>—</td>
<td>320 320 310 310</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>69</td>
<td></td>
<td>225 225</td>
<td>220 220</td>
<td>—</td>
<td>200 200 200 200</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>75</td>
<td></td>
<td>—</td>
<td>250 250</td>
<td>—</td>
<td>240 240 240 240</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>29</td>
<td></td>
<td>215 215 215</td>
<td>305 305</td>
<td>—</td>
<td>300 300 300 300</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>60</td>
<td></td>
<td>220 220</td>
<td>—</td>
<td>280 280</td>
<td>260 260 260 260</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>67</td>
<td></td>
<td>225 225</td>
<td>220 220</td>
<td>—</td>
<td>220 220 220 220</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>69</td>
<td></td>
<td>225 225</td>
<td>295 295</td>
<td>—</td>
<td>290 290 290 290</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>74</td>
<td></td>
<td>225 225</td>
<td>360 360</td>
<td>—</td>
<td>310 310 310 310</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>52</td>
<td></td>
<td>250 250 250</td>
<td>260 260</td>
<td>—</td>
<td>260 260 260 260</td>
<td>77</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>55</td>
<td></td>
<td>210 210 210</td>
<td>520 520</td>
<td>—</td>
<td>240 240 240 240</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>78</td>
<td></td>
<td>250 250 250</td>
<td>230 300 300 300 300 260 260 260 125 43</td>
<td>5 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>63</td>
<td></td>
<td>225 225</td>
<td>260 310</td>
<td>—</td>
<td>250 300 300 300</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>46</td>
<td></td>
<td>225 220</td>
<td>470 425</td>
<td>—</td>
<td>210 370 370 370</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>69</td>
<td></td>
<td>220 220</td>
<td>290 360</td>
<td>—</td>
<td>270 290 290 290</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>52</td>
<td></td>
<td>225 225</td>
<td>270 300</td>
<td>—</td>
<td>270 270 270 270</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>75</td>
<td></td>
<td>225 225</td>
<td>350 430</td>
<td>—</td>
<td>370 320 320 320</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>72</td>
<td></td>
<td>225 225</td>
<td>370 300</td>
<td>—</td>
<td>370 290 290 290</td>
<td>38</td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>65</td>
<td></td>
<td>220 220</td>
<td>380 420</td>
<td>—</td>
<td>300 390 300 390</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>78</td>
<td></td>
<td>225 225</td>
<td>340 490</td>
<td>—</td>
<td>220 220 220 220</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>F</td>
<td>77</td>
<td></td>
<td>225 225</td>
<td>350 490</td>
<td>—</td>
<td>210 210 210 210</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>M</td>
<td>46</td>
<td></td>
<td>225 225 225</td>
<td>225 225</td>
<td>290 290</td>
<td>290 290 290 280 280 280 125 43</td>
<td>5 4</td>
</tr>
</tbody>
</table>

*a, b and c represent the time points at which corneal HSV-1 isolates were obtained. Data showing differences in amplicon length between sequential samples of individual patients are in italics. Based on the genotypic analyses, patients 1 through 19 were designated as group 1 (genotype sequential isolates identical) and patients 20 through 30 as group 2 (genotype sequential isolates different).

† Patient 22 had bilateral herpetic keratitis. In patient 5, the first and second isolates were obtained from the left eye, and the third isolate was obtained from the right eye.

‡ − and + indicate that corneal HSV-1 isolates obtained were from the same or contralateral cornea, respectively.

HSV-induced keratitis, such as herpetic stromal and necrotizing keratitis. This is also reflected in the high number of PKPs in the patient cohort (Table 2; mean PKPs, 1.4 per patient; range, 0–6).

The clinical characteristics of the patients in groups 1 and 2 were compared, to identify the factors predisposing for corneal HSV-1 superinfection. Overall, the immune status and ophthalmic condition did not differ significantly between both groups (data not shown). Additionally, gender, inter-recurrence period, anatomic location of the lesions (left or right eye), ocular history, and clinical picture at time of recurrences were not statistically different between both groups (Tables 1, 2).

**Comparison of Therapeutic Regimen for RHK in Patient Groups 1 and 2**

The clinical outcome of corticosteroid treatment before or during the convalescence period was not statistically different between both groups. The potential effects of long-term (val)acyclovir treatment were not numerous enough to be interpreted (data not shown).

Although the mean number of PKP per patient did not significantly differ between both groups, indicating that both groups were comparable in disease severity, a correlation between corneal HSV-1 superinfection and time point of PKP was observed. Whereas no patient in group 1 received a corneal transplant between the sampled recurrences, 4 of the 11 patients in group 2 underwent a PKP during the inter-recurrence period in the same eye from which the sequential corneal HSV-1 isolates were obtained (Table 2; *P = 0.012*). Patient 30 received a corneal allograft between the first and second sampled recurrence.

**DISCUSSION**

HSVs have the ability to reside in latent form within neurons of the sensory ganglia that innervate the initial site of infection. It is therefore assumed that recurrent herpetic lesions are due to reactivation of the HSV strain acquired during the primary infection. In contrast, HSV superinfection in patients with recrudescent herpetic lesions has been documented. Patients with recurrent herpetic keratitis risk the development of HSK, a leading cause of corneal blindness worldwide. The objective of the present study was to examine the two types of
regions results from differences in the number of Re and point
highly GC-rich DNA sequences, respectively.

Genotype differences are most likely not due to a genetic
Pfu
HSV-2 genital herpes.7 The latter study and our data indicate
has been described in two of three patients with recurrent
infection of the contralateral cornea most likely occurred
through the external route (cross-infection). It was interesting
that sequential isolates of 37% of the patients (patients 20
through 30; designated as group 2) had a different genotype, suggesting
corneal HSV-1 superinfection in the inter-recurrence period.

Alternatively, the instability of the analyzed hypervariable
regions may account for these differences. HSVs, similar to
other DNA viruses, have less genomic variability than RNA
viruses and are genetically more stable after in vitro pas-
sages.11,15 In addition to standard RFLP, several hypervariable
regions within the HSV-1 genome have been used to differen-
tiate HSV-1 isolates genetically.11 Intratypic variation of the
regions results from differences in the number of Re and point
mutations.10,12,13 The stability of the eight HSV-1-specific Re
regions described varies extensively.11 Genotypic analyses of
HSV-1 single-plaque clones compared with their parental strain
have shown that the hypervariable regions located within the
HSV-1 genes US1, US12, and US10/11 remain stable during in
vitro culture.13 Moreover, the mean inter-recurrence period of
patient group 1 (30.4 months) and the proofreading activity of
Pfu DNA polymerase, implies that the intraindividual HSV-1
genotype differences are most likely not due to a genetic
alteration of the initial strain or errors in amplifying these
highly GC-rich DNA sequences, respectively.

Analogous to our study, reinfection with new HSV-2 strains
has been described in two of three patients with recurrent
HSV-2 genital herpes.7 The latter study and our data indicate
that HSV superinfection is not as rare as previously sug-
gested.4–6 To differentiate HSV strains, most investigators have
used RFLP analyses with 6-bp recognizing restriction enzymes
(REs).4–6 The lower efficacy of 6-bp RE, compared with the
4-bp RE, to differentiate HSV-1 strains may account for the
different frequencies of HSV superinfection described.11

Generally, corneal HSV-1 infection results in the develop-
ment of herpetic epithelial keratitis in approximately two
thirds of patients.2 In the present study, however, the patient
cohort consisted predominantly of patients with severe enti-
ties of herpetic keratitis (Table 2). Selection of individuals with a
higher susceptibility for corneal HSV-1 infection may have
occurred. Alternatively, the patients in group 2 may have been
superinfected with a more virulent HSV-1 strain.

Among the clinical data analyzed, only the time point of
PKP was significantly different between the patient groups.
Although no patients in group 1 had undergone transplantation
between sampling, 4 of 11 patients in group 2 underwent PKP
during the inter-recurrence period in the same eye from which
the corneal HSV-1 isolates were obtained. The data suggest that
PKP is a risk factor for corneal HSV-1 superinfection. Primary
graft failure and endothelial abnormalities of cultured eye bank
corneas have been associated with the presence of HSV-1 DNA
in affected corneal allografts.16 The high prevalence of HSV-1
DNA in eye bank corneas (~ 10%)16 has led to the hypothesis
of HSV-1 latency in corneas. Although expression of HSV-1
latency-associated transcript, a marker of latency, has been
detected in latently infected rabbit corneas and human HSK
corneas, corneal HSV-1 latency remains controversial.16,17 Re-
cently, Zheng et al.18 have demonstrated HSV-1 transmission
through PKP in an experimental rabbit model. HSV-1 DNA was
detected in recipient corneal rims and the innervating trigem-
inal ganglion (TG) of naïve rabbits that received corneal allo-
grafts from latently infected rabbits. Moreover, infectious
HSV-1 was recovered from the tear film of the rabbits that had
undergone transplantation.18 Besides true ocular viral latency,
putative HSV-1 transmission through PKP may be due to coin-
cidental shedding of small amounts of infectious virus from the
allograft or a low level of viral replication in corneal resident
cells in the allograft at time of PKP.16,19

Alternatively, the TG may harbor a mixture of HSV-1 strains
with which the patients were previously latently infected,
before PKP. In animal model studies, corneal trauma (similar to
PKP) has been shown to induce reactivation of HSV-1 causing
corneal HSV-1 infection.20,21 Assuming that the human TG can
be latently infected with multiple HSV-1 strains, PKP may serve
as a powerful reactivation stimulus to certain portions of the
TG, allowing multiple strains to reactivate.22

In conclusion, this study is the first to demonstrate a high
frequency of corneal HSV-1 superinfection in patients with
RHK. Although we could not determine the source or mode of
corneal HSV-1 superinfection in patient group 2, the data
suggest that PKP may be a risk factor for transmission of HSV-1
with subsequent reactivation of the donor-derived HSV-1 strain
in the corneal allograft. Recently, we have genetically charac-
terized HSV-1 DNA isolated from a donor cornea before and

Figure 2. Amplicons of the hypervariable regions US1 and US12 am-
plified from sequential corneal HSV-1 isolates from patients with RHK. Left:
Amplicons were electrophoresed on 2.5% agarose gels and were visual-
ized by ethidium bromide staining. Representative sequential samples
(a, b, and c) of 10 patients are shown: patients 1 through 5; (A) group 1, and patients 20 through 24;
(B) group 2. A 25-bp molecular size
marker was run in parallel. Numbers
on the left are in base pairs. Right:
autoradiograph of DNA in gel after Southern blot hybridization with ap-
propriate reiteration-specific probe.
after PKP in a patient with newly acquired herpetic keratitis. The DNA sequences were identical in both strains, providing conclusive evidence for graft-to-host transmission of HSV-1 through corneal allograft.²⁵

**References**


