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PURPOSE. To determine whether genetic ablation of the CC
chemokine receptor CCR5 (involved in leukocyte and endo-
thelial chemotaxis) inhibits the development of corneal neo-
vascularization.

METHODS. Wild-type C57BL/6J mice and species-specific coun-
terparts with targeted homozygous disruption of the CCR5
gene underwent chemical and mechanical denudation of cor-
neal and limbal epithelium. Corneas were harvested 2 and 4
weeks after injury. Neovascularization was quantified by CD31
immunostaining. Expression of VEGF protein was quantified by
ELISA.

RESULTS. The mean percentages of neovascularized corneal area
in control mice and CCR5-deficient mice 2 weeks after denu-
dation were 58.3% and 38.5% (P � 0.05), respectively. At 4
weeks after denudation, the corresponding percentages were
67.6% and 44.0% (P � 0.028). In CCR5-deficient mice, VEGF
protein levels were reduced 51.1% at 2 weeks (P � 0.05) after
injury and 37.3% at 4 weeks (P � 0.03).

CONCLUSIONS. CCR5-deficient mice showed a persistent 34% to
35% inhibition of corneal neovascularization for up to 4 weeks.
This inhibition correlates with reduced expression of VEGF.
These data implicate CCR5 as one essential component in the
development of corneal neovascularization. (Invest Ophthal-
mol Vis Sci. 2003;44:590–593) DOI:10.1167/iovs.02-0685

Corneal neovascularization (CNV) is a central feature in the
pathogenesis of many blinding corneal disorders and a

major sight-threatening complication in corneal infections and
chemical injury and after keratoplasty, in which neovascular-
ization adversely impacts corneal graft survival.1

Although the molecular mechanisms underlying CNV have
not been fully deciphered, vascular endothelial growth factor
(VEGF) seems to play an indispensable role. It induces CNV
when applied exogenously2 and is the principal endogenous
angiogenic force in the neovascularization that follows limbal
injury.3 Transmigrating and invading corneal leukocytes ap-
pear to provide much of the requisite VEGF that drives CNV.3

The recruitment of leukocytes to inflammatory sites is me-
diated by chemokines. Chemokines bind to specific receptors
that, despite some redundancy, show specificity for individual
chemokines. Evidence is emerging that individual chemokines
attract specific leukocyte populations through processes deter-
mined by ligand specificity and the expression patterns of the
corresponding receptors.4 CCR5 receptor ligands include the
macrophage inflammatory proteins (MIPs) 1� and 1�, which
recruit both macrophages and neutrophils.5,6

Endothelial cell migration and proliferation are also essen-
tial to angiogenesis, and these processes are known to be
influenced by vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (bFGF).7,8 Further, endothelial
cell chemotaxis and/or proliferation can be stimulated by che-
mokines, including interleukin (IL)-8, monocyte chemotactic
protein (MCP)-1, regulated on activation normal T-cell ex-
pressed and secreted (RANTES), and MIP-1� and -1�.9,10

Previous work has confirmed that corneal angiogenesis is
driven in large part by inflammatory mediators.11,12 MIP-1� has
been associated with CNV in helminth keratitis,13 shown to be
required for the development of CNV in HSV keratitis14,15 and
demonstrated to be angiogenic in Kaposi’s sarcoma–associated
herpes virus infection.16 It has also been associated with an-
giogenesis in corneal allograft rejection.17,18 Its receptor,
CCR5, also found on endothelial cells, is a receptor for CC
chemokines that are involved in angiogenesis, including
RANTES and MIP-1� and -1�.10,19

We therefore examined the role of CCR5 in a clinically
relevant ocular model of corneal injury by studying the neo-
vascular response of animals genetically deficient in these mol-
ecules.

METHODS

All animal experiments were approved by the Massachusetts Eye and
Ear Infirmary Animal Care Committee and the University of Kentucky
Animal Care Committee and conformed to the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. Mice were anes-
thetized by intramuscular injection of 50 mg/kg ketamine hydrochlo-
ride (Abbott Laboratories, N. Chicago, IL) and 10 mg/kg xylazine
(Bayer, Shawnee Mission, KS). Animals were killed by a lethal dose of
pentobarbital (150 mg/kg).

Animals

Wild-type C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) were
used as controls. To create the CCR-knockout strain, the entire CCR5
coding region was replaced by insertion of a neomycin-resistant ex-
pression cassette, as described previously.20,21 Although the original
knockout strains were generated on a mixed C57BL/6 � 129/Ola
genetic background, the mice used in the experiments described
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herein represent the progeny of the eighth generation backcross of the
knockout mutations to inbred C57BL/6 animals. Because the CCR2 and
CCR5 genes are very closely linked, a wild-type control strain for both
knockout strains was developed by backcrossing the wild-type CCR5
locus from 129/Ola to the C57BL/6 background for eight generations.
This control strain minimizes the genetic differences flanking the
targeted allele. Wild-type C57BL/6 and 129/Ola CCR5 genes were
distinguished by the presence of a BglII restriction fragment length
polymorphism.20

Genotype Analysis

The genotype of all experimental animals was determined on tail DNA
samples. CCR5 knockout alleles were identified by PCR analysis with a
set of four primers. Wild-type CCR5 alleles were identified by synthesis
of a 450-bp PCR product with primers complementary to sequences on
each side of the crossover site (primer 1, 5�-AAGCAGGAGGATCGT-
GAGCTTGAC-3�, and primer 2, 5�-GAAACAAGTTGTTGTGCACCTCAG-
3�). Disrupted CCR5 alleles were identified by synthesis of a 350-bp
PCR product with a primer that is complementary to a sequence in the
neomycin resistance coding region (primer 3, 5�-TTCCATTGCT-
CAGCGGTGCT-3�) combined with a primer complementary to a CCR5
sequence downstream of the crossover site (primer 4, 5�-TGTTTCCTC-
CTCTAGCCTTCACTATG-3�).

Experimental Design

Both groups of mice (control, CCR5 knockout) underwent corneal
injury. Corneas were harvested 2 and 4 weeks after injury. An image
analyzer was used by a masked investigator to quantify neovasculariza-
tion in immunostained corneas.

Model of Corneal Neovascularization

Topical proparacaine and 2 �L of 0.15 M NaOH were applied to the
right cornea of each mouse. The corneal and limbal epithelia were
removed with a Tooke corneal knife (Katena Products, Denville, NJ) in
a rotary motion parallel to the limbus. Erythromycin ophthalmic oint-
ment was instilled immediately after epithelial denudation.

Labeling of Corneal Neovascularization

Immunohistochemical staining for vascular endothelial cells was per-
formed on corneal flatmounts. Fresh corneas were dissected, rinsed in
PBS for 30 minutes, and fixed in 100% acetone (Sigma, St. Louis, MO)
for 20 minutes. After the corneas were washed in PBS, nonspecific
binding was blocked with 0.1 M PBS, 2% albumin (Sigma) for 1 hour at
room temperature. Incubation with FITC-coupled monoclonal anti-
mouse CD31 antibody (Pharmingen) at a concentration of 1:500 in 0.1
M PBS, 2% albumin at 4°C overnight was followed by subsequent
washes in PBS at room temperature. Corneas were mounted with an
antifading agent (Gelmount; Biomeda, Inc, San Francisco, CA) and
visualized with a fluorescence microscope (Leica, Wetzlar, Germany).

Quantification of Corneal Neovascularization

Digital quantification of corneal neovascularization has been de-
scribed.22,23 Images of the corneal vasculature were captured with a
CD-330 charge-coupled device (CCD) camera (Dage-MIT, Inc., Michi-
gan City, IN) attached to a fluorescence microscope (MZ FLIII; Leica
Microsystems Inc., Deerfield, IL). The images were analyzed on com-
puter (Openlab; Improvision Inc., Lexington, MA), resolved at 624 �
480 pixels, and converted to tagged information file format (TIFF) files.
The neovascularization was quantified by setting a threshold level of
fluorescence above which only vessels were captured. The entire
mounted cornea was analyzed to minimize sampling bias. The quanti-
fication of the neovascularization was performed in masked fashion.
The total corneal area was outlined, with the innermost vessel of the
limbal arcade used as the border. The total area of neovascularization
was then normalized to the total corneal area, and the percentage of
the cornea covered by vessels was calculated.

Corneal Harvest for ELISA

At 1, 3, 14, and 21 days, scraped corneas were dissected and placed in
60 �L lysis buffer (20 mM imidazole hydrochloride, 10 mM potassium
chloride, 1 mM magnesium chloride, 10 mM EGTA, 1% Triton, 10 mM
sodium fluoride, 1 mM sodium molybdate, and 1 mM EDTA [pH 6.8]),
supplemented with protease inhibitor (Sigma) followed by homogeni-
zation. The lysate was cleared of debris by centrifugation at 14,000 rpm
for 15 minutes (4°C), and the supernatant was collected. Total protein
was determined with a Bradford protein assay (Bio-Rad, Hercules, CA).

VEGF ELISA

VEGF was determined by a commercially available ELISA kit (R&D
Systems, Minneapolis, MN) which recognizes the 164-amino-acid splice
variant of mouse VEGF. The assay was performed according to the
manufacturer’s instructions. Briefly, standards or tissue samples (50
�L) were pipetted into an antibody-coated 96-well plate containing 50
�L of assay diluent and incubated for 2 hours at RT on a shaker. The
wells were then washed five times with wash buffer, 100 �L of VEGF
conjugate was added, and the samples were again incubated for 2
hours at RT. Samples were washed five times, 100 �L substrate buffer
was added, the samples were incubated for 30 minutes at RT, the
reaction was stopped, and the absorption was measured with an ELISA
reader (Emax; Molecular Devices, Sunnyvale, CA) at 450 nm with
lambda correction at 570 nm. All measurements were performed in
duplicate. The lower limit of ELISA was 3.0 pg/mL. The tissue sample
concentration was calculated from the standard curve and corrected
for total protein.

Statistics

Data were analyzed by the Kruskal-Wallis test with the Dunn test for
multiple comparisons (SPSS, Inc., Chicago, IL). Type I error not ex-
ceeding 0.05 was deemed significant.

RESULTS

Data on (mean � SEM) percentages of neovascularized cornea
area in mice 2 and 4 weeks after corneal scraping and implan-
tation are presented in Figure 1.

Percentage Area of Corneal Neovascularization

At 2 weeks after denudation, CCR5�/� mice (n � 8) had 34.0%
less (P � 0.05) neovascularized corneal area than control mice
(n � 13). At 4 weeks after denudation, CCR5�/� mice (n � 6)
had 34.9% less neovascularized corneal area than control mice
(P � 0.028). Representative images are shown in Figure 2.

FIGURE 1. Mean � SEM fraction of corneal neovascularization, 2 and
4 weeks after denudation in control (■ ) and CCR5-deficient (1) mice.
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VEGF Expression

Data are presented in Figure 3. CCR5�/� mice had 51.1% less
corneal VEGF than control mice at 14 days after scraping (P �
0.05) and 37.3% less VEGF at 21 days after scraping (P � 0.03).

DISCUSSION

In this study, CCR5-deficient mice experienced a sustained
inhibition of corneal neovascularization after chemical and
mechanical denudation of corneal epithelium, an effect corre-
lated with reduced VEGF expression. These data implicate
CCR5 as one of the components in the development of corneal
neovascularization, probably because of the effects of this
receptor and ligands on endothelial cells and macrophages.
Endothelial cells possess CCR519,24,25 and undergo chemotaxis
in response to RANTES, MIP-1�, and MIP-1� (ligands for
CCR5).10

Macrophage involvement in corneal neovascularization is
well known24 and infiltration of these cells, which is closely
associated with neovascularization, peaks 2 weeks after cor-
neal injury.25 Use of manumycin, a Ras farnesyltransferase
inhibitor, inhibits CNV and infiltration of macrophages (but not
that of neutrophils).26 Pharmacologic depletion of macro-
phages dramatically limits CNV in corneal allograft rejection.27

Increased expression of VEGF after corneal injury has been
localized to infiltrating inflammatory cells, especially macro-
phages, after corneal injury,3 which probably accounts for the
reduced expression of VEGF observed in this study.

CCR5 plays a role in chemotaxis of mature macrophages,
because MIP-1� is chemotactic for differentiated macro-
phages.28,29 MIP-1� is correlated with corneal infiltration of
leukocytes, and antibodies to MIP-1� reduce corneal opacifi-
cation in herpetic keratitis.30 Previous reports have found
upregulation of MIP-1� after alkali injury, Pseudomonas infec-
tion, and HSV infection.30–32 A proximate role of MIP-1�, and
thus CCR5, is likely, because it is produced by the corneal
stroma in response to injury.31,33

Because inhibition of CNV in CCR5-deficient mice is only
approximately one third, it is clear that other mechanisms are
involved. However, we may speculate as to the reasons for the
persistent inhibition of corneal neovascularization observed in

CCR5�/� mice. First, CCR5 may be involved in migration and
proliferation of endothelial cells. Second, the reduced expres-
sion of VEGF in this model (and thus diminished angiogenic
stimulus) may have been due to decreased macrophage infil-
tration.

In the present study, neovascularization was persistently
inhibited in CCR5-deficient mice, which points the way toward
a possible therapeutic target for pharmacologic agents. That
this inhibition was demonstrated in a mechanical and chemical
corneal trauma increases its clinical relevance. The method of
inducing neovascularization affects pharmacologic efficacy—
for example, integrin antagonists inhibit bFGF-induced corneal
neovascularization but not that caused by chemical injury.34

In summary, this finding could advance the management of
blinding disorders such as Stevens-Johnson syndrome, cicatri-
cial pemphigoid, corneal allograft rejection, and corneal injury
from infection, trauma, or alkali. Future research should also
characterize the effect of and the complex molecular interplay
among chemokines, leukocytes, and neovascularization and
extend this model to other sites of ocular neovascularization.
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