Molecular cloning of murine decay accelerating factor by immunoscreening

Yoshihiro Fukuoka¹, Akira Yasui², Noriko Okada³ and Hidechika Okada³

Departments of ¹Molecular Immunology and ²Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai 980-77, Japan
³Department of Molecular Biology, Nagoya City University School of Medicine, Mizuho-cho, Nagoya 467, Japan

Abstract

Although the cDNA of human decay accelerating factor (DAF) which restricts complement activation on homologous cell membranes was cloned in 1987, all trials to detect the cDNA of mouse DAF by cross-hybridization were unsuccessful. However, by immunoscreening with a rabbit antiserum against purified mouse DAF, we successfully cloned the cDNA. It contains four typical short consensus repeats (SCR) similar to that in human and guinea pig DAF. The base sequence showed 63.7 and 63.8% identity to that of human and guinea pig DAF respectively. The deduced amino acid sequence identity to human and guinea pig DAF was 47.2 and 46.5% respectively.

Identification of the mouse DAF gene should open a new approach for determining the actual in vivo role of DAF by analyzing autoimmune mice as well as generating DAF gene knockout mice using embryonic stem cells.

Introduction

Several membrane molecules which restrict the autologous complement reaction have been demonstrated on human cells. Those are decay accelerating factor (DAF) (1-3), membrane cofactor protein (MCP) (4,5) and 20 kDa homologous restriction factor (HRF20) (6). HRF20 is also known as CD59 (7), MAC inhibitory factor (8,9) and membrane inhibitor of reactive lysis (10) due to simultaneous discovery in different laboratories. These membrane inhibitors play a role in protecting self cells from the action of autologous complement which is self activating because C3 molecules continuously, although slowly, automatically convert to the active form (11,12) due to hydrolysis of a thioester bond in the α-chain by a water molecule which happens to penetrate the molecule (13). DAF and MCP restrict the amplification reaction at C3 convertase and HRF20 (CD59) restricts the terminal step of complement resulting in membrane damage.

Previously, we purified mouse DAF (14) from mouse erythrocytes in a series of chromatographic steps using its inhibitory function on C3 convertase to monitor its activity. Then, antiserum against mouse DAF (anti-mouse DAF) was prepared by immunizing a rabbit with the purified antigen. It is important to analyze DAF function in the mouse because (i) the role of DAF in various diseases can be examined in the mouse model of human disease and (ii) previously unknown functions of DAF in vivo can be examined using transgenic and gene targeting methods in the mouse. Many attempts to clone mouse DAF cDNA by PCR were carried out as well as cross-hybridization methods using homology to human DAF without success. Since there is another molecule, complement receptor related gene Y (Crry/p65), in the mouse with DAF activity, it was argued that the mouse counterpart of human DAF may not exist, although we previously reported biochemical purification of mouse DAF (14). Now we demonstrated the presence of DAF in the mouse complement system by cloning mouse DAF cDNA using immunoscreening. We examined its homology with human and guinea pig DAF (3,15), and also with mouse Crry/p65 (16-18).

Methods

Materials

[α-32P]dCTP was purchased from Amersham Japan (Tokyo, Japan). A mouse spleen cDNA library constructed in a Lambda ZAPII vector was purchased from Clontech (Palo Alto, CA). Rabbit anti-mouse DAF antibody was prepared as
Fig. 2. Nucleotide and deduced amino acid sequences of mouse DAF isolated from a mouse lung cDNA library. The polyadenylation signal is indicated by double underlining as in Fig. 1. Several nucleotides and amino acids are different from those of mouse DAF cDNA obtained by immunoscreening.
Immunoscreening of murine DAF cDNA

![Fig. 3. The deduced amino acid sequence of mouse DAF was compared with those of human and guinea pig DAF. Consensus sequences of the three kinds of DAF are boxed.](https://academic.oup.com/intimm/article-abstract/8/3/379/858621)

described (14). Alkaline phosphatase-conjugated goat anti-rabbit IgG was obtained from Zymed (San Francisco, CA).

**Screening of mouse spleen cDNA library using anti-mouse DAF**

Before screening of a mouse spleen cDNA Lambda ZAP II library, non-specific anti-*Escherichia coli* antibody in rabbit anti-mouse DAF was adsorbed on a nylon membrane filter (Amersham Japan) which was pretreated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane filter previously saturated with the supernatant of boiled XL1-Blue *E. coli*. After phage was grown at 42°C for 3.5 h, a nylon membrane fil...
Immunoscreening of marine DAF cDNA

MO DAF SCR2
KSSAPKRELFSASLKKEYLHNPNIYFEVETYEGPCFRRPPLPGKAGTCGLQASLIPSVAQREY
Crry SCR1
KHEAFSOP-SAKPINLTDEEFSTTYLLVEGCPYIDR---QFSIITKGCQDTSAEDKOLIRQ

MO DAF SCR3
KKCSSNPNEILNLNTYCTGGLGFSEEFNYCPRGNYLVLGAFSTPVVTVTTDQMLFTCCV
Crry SCR2
GTEDEOPNLHVTQEGFRNVTQNKNGLRANLSSAVLVTPSVDYGATCEGWR

MO DAF SCR4
EIMPEPPLTQFNNREGSDSYVSVTVYTC---DGT-YLHYNAGYCTVSKSDVGSNPPPCIEEMK
Crry SCR3
KELIPPEPPLQFNSSTEDFHQAVTVYKNTDGALHNLVGEFSYLCISMDGEIIKNSGSPPPCIELMK

Fig. 4. Comparison of the amino acid sequences of SCR regions of mouse DAF and Crry/p65.

Fig. 6. RT-PCR analysis of various mouse tissues. The region from SCR4 to the 3' end as shown in Fig. 1 was amplified. Each first cDNA strand was derived from brain (lane 1), kidney (lane 2), lung (lane 3), liver (lane 4) and spleen (lane 5). DNA size makers are on the right.

Results and discussion

A cDNA which has a homology to human and guinea pig DAF was successfully cloned using anti-mouse DAF for immunoscreening 6x10^6 clones infected with Lambda Zap II phage containing a C57BL/6 mouse spleen cDNA library. We then termed the clone tentatively mouse DAF cDNA. The nucleotide and deduced amino acid sequences are shown in Fig. 1. The cDNA encodes a protein of 356 amino acids with hydrophobic amino acid rich-signal peptides. An initiation codon is not apparent in this clone. We then isolated another mouse DAF cDNA clone from a mouse lung cDNA library using the PCR amplified portion of this clone. By screening of a 5x10^5 mouse lung λgt11 library, 20 positive clones were obtained. Several clones were analyzed and found to have an initiation codon ATG as shown in Fig. 2. Several nucleotides and deduced amino acids of a mouse DAF clone derived from a lung library were different at the position indicated by arrows in Fig. 2 from that of mouse DAF isolated from a spleen library by immunoscreening. It is conceivable that it may be based on the difference in mouse lineage used to construct the cDNA library. The ZAP II cDNA library is derived from a BALB/c spleen and the λgt11 cDNA library is derived from C57Bl/6 lung. A typical polyadenylation signal sequence (AATAAA) was found 80 bp downstream of the TAG sequence without (Fig. 1) and with poly(A) tails (Fig. 2). The deduced amino acid sequence of mouse DAF cDNA was compared to the reported human (2,3) and guinea pig DAF (15). As shown in Fig. 3, mouse DAF shows 47.2 and 46.5%
The transmembrane form of mouse DAF. Nonaka et al. (15) also reported that alternative splicing of two optional exons generates transmembrane and anchored forms of guinea pig DAF. The transmembrane form of mouse DAF was not identified in our screening of the mouse lung cDNA library.

Since various syngeneic mouse strains including those susceptible to several types of autoimmune diseases are available, identification of the mouse DAF gene should provide a way to investigate the actual in vivo role of DAF in development of autoimmune diseases. Furthermore, availability of embryonic stem cells in mice will also be an advantage in studies of the role of DAF in DAF gene manipulated mice.

Acknowledgements
We thank Dr William Campbell for English editing and discussion, Mr Takashi Miwa for discussion, and Ms Yosuke Nakagami and Ms Chiharu Asakura for technical assistance. This work was partially supported by Grants-in-Aid from the Japanese Ministry of Education, Science and Culture.

Abbreviations
Crry complement receptor related gene y
DAF decay accelerating factor
HRF20 20 kDa homologous restriction factor
MCP membrane cofactor protein
SCR short consensus repeat

References
Immunoscreening of murine DAF cDNA


