The Elements of Mechanical Design

BY
James G. Skakoon

ASME Press New York 2008
Table of Contents

Preface v

Acknowledgements vi

Part I
Elementary Rules of Mechanical Design

1. Create designs that are explicitly simple—keep complexity intrinsic. 3

2. Keep the functions of a design independent from one another. 4

3. Use exact constraint when designing structures and mechanisms—never overconstrain a design. 8
 3.1 Exact constraint: a description 11
 3.2 Basic theory of exact constraint 11
 3.3 Exact constraint in two dimensions 12
 3.4 Nesting forces 15
 3.5 Constraint theory in practice 17
 3.5.1. Curvature and surface matching 17
 3.5.2. Elastic constraint design 18

4. Plan the load path in parts, structures, and assemblies. 21

5. Triangulate parts and structures to make them stiffer. 25

6. Avoid bending stresses. Prefer tension and compression. 29

7. Improve designs with self-help. 31
 7.1 Self-help that creates forces 32
 7.2 Self-help that redirects forces 32
 7.3 Self-help that balances forces 33
 7.4 Self-help that distributes loads 34

8. Manage friction in mechanisms. 35
 8.1 Avoid sliding friction. 35
 8.2 Maximize the length of linearly-guided components. 35
 8.3 Select rotary motion over linear motion. 37
 8.4 Use rolling element bearings whenever possible. 40
 8.5 Use flexures to eliminate friction. 41

Part II
Essentials of Thought and Procedure in Mechanical Design

9. Use three-dimensional solid model layouts to find the best arrangement of parts and assemblies. 45

10. Invert geometry to reveal new solutions. 47
11. Build prototypes of everything—but not all at once. 49
12. Separate strength from stiffness—and stiffness from strength. 52
13. Never overlook buckling phenomena in parts and structures. 53
14. Analyze and test for trends and relationships. 55
15. Identify contingency plans to minimize risks in design. 56

PART III
Some Practical Advice

16. Avoid press fits. 61
17. Use closed sections or three-dimensional bracing for torsional rigidity. 63
18. When designing springs, use a low spring rate and a high initial deflection. 65
19. Minimize and localize the tolerance path in parts and assemblies. 70
20. Use mechanical amplification to reduce failures. 72
21. Include lead-ins in assembled designs. 73
22. Design assemblies to be self-locating, self-fixturing, self-securing, self-aligning, self-adjusting. 75
23. Use self-assembling symmetry to create a whole from two halves. 77

Appendix A:
Rules for Exact Constraint 81

Appendix B:
Nesting Force Windows in Exact Constraint Design 82

Appendix C:
Design for Assembly Rules 84

Appendix D:
With Experience Comes Wisdom 85

Text Notes and References 89

Index 95
Preface

This book contains principles and practices for mechanical designers. They come from the experience, know-how, and intuition of expert designers, but they represent engineering fundamentals in a practical way.

Consider two examples. Even children quickly learn that carrying two pails of water, one on each side, is easier than carrying a single pail on the right or left. This is not an isolated observation, but a useful principle of design described in this book (self-help). Or haven’t we all spilled a drinking glass on a table that teeters side-to-side on two legs, resting now on the third, now on the fourth? Four-legged tables are fundamentally flawed and represent another design principle described in this book (over-constraint). Agreed, these cases are obvious enough. But in this book they become principles and guidelines, explicitly stated, to be applied to other design problems—where they may be rather less obvious.

This book is not about engineering science. Established books exist for machine design, structural analysis, and kinematics. Neither is it about design for manufacturability nor about the design process; excellent books have been written, especially in recent years, for these subjects as well. Nonetheless, despite an increased emphasis on design and manufacturing in both university curricula and practical literature, existing books have little about mechanical design as practiced by experienced designers.

Good designers often understand and use the ideas in this book whether or not they recognize them as distinct principles. Many designers, myself included, learned them either by trial and error or by exploiting colleagues’ experience. Perhaps everything here would be part of all designers’ practice were they to design long enough. But all too often designers are unaware of or do not fully grasp ideas that experts use to great advantage.

Therefore, in this book I explicitly state design principles and practices: 1) so beginning designers do not have to discover them on their own as I had to, and 2) so all designers can apply them as fundamental concepts throughout their designs.

Although nothing in this book is new, its narrow focus on basic, detail-level mechanical design is unique. Use it as a primer, and a refresher, on good mechanical design.

James G. Skakoon
Acknowledgements
I would like to acknowledge the people who generously agreed to be interviewed for this book:

Benge Ambrogi
Joel Bartholomew
Douglass Blanding
David Chastain
Ron Franklin
Gilbert Fryklund

Larry Gray
Michael Knipfer
Herbert Loeffler
Brian Nelson
David Schuelke

I interviewed designers to confirm and add to the book's content. Comments repeated themselves with remarkable consistency, but many were unique. You can read some of the good ones in Appendix D.

Also generously, Paul D. Lucas, Herbert Loeffler, and Gilbert Fryklund reviewed the manuscript, as did many others anonymously, for which I am grateful.