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ABSTRACT
◥

Background: Previously, family-based designs and high-risk
pedigrees have illustrated value for the discovery of high-
and intermediate-risk germline breast cancer susceptibility genes.
However, genetic heterogeneity is a major obstacle hindering
progress. New strategies and analytic approaches will be necessary
to make further advances. One opportunity with the potential to
address heterogeneity via improved characterization of disease is
the growing availability of multisource databases. Specific to
advances involving family-based designs are resources that include
family structure, such as the Utah Population Database (UPDB). To
illustrate the broad utility and potential power of multisource
databases, we describe two different novel family-based approaches
to reduce heterogeneity in the UPDB.

Methods:Ourfirst approach focuses on using pedigree-informed
breast tumor phenotypes in gene mapping. Our second approach
focuses on the identification of families with similar pleiotropies.
We use a novel network-inspired clustering technique to explore
multi-cancer signatures for high-risk breast cancer families.

Results: Our first approach identifies a genome-wide signifi-
cant breast cancer locus at 2q13 [P¼ 1.6� 10�8, logarithm of the
odds (LOD) equivalent 6.64]. In the region, IL1A and IL1B are of
particular interest, key cytokine genes involved in inflammation.
Our second approach identifies five multi-cancer risk patterns.
These clusters include expected coaggregations (such as breast
cancer with prostate cancer, ovarian cancer, and melanoma),
and also identify novel patterns, including coaggregation with
uterine, thyroid, and bladder cancers.

Conclusions: Our results suggest pedigree-informed tumor
phenotypes can map genes for breast cancer, and that various
different cancer pleiotropies exist for high-risk breast cancer
pedigrees.

Impact: Both methods illustrate the potential for decreasing
etiologic heterogeneity that large, population-based multisource
databases can provide.

See all articles in this CEBP Focus section, “Modernizing
Population Science.”

Introduction
The use of the family study design, and high-risk pedigrees in

particular, was instrumental in the discovery of germline breast cancer
susceptibility genes and our understanding of their pleiotropies (1, 2).
However, breast cancers, like other complex diseases, have many
sources of heterogeneity that can hinder gene discovery. Efforts to

identify additional etiologic risk factors are hampered by these com-
plexities and new methods to identify and reduce sources of hetero-
geneities are needed to identify novel disease loci. Deconstructing
within-site heterogeneity and identification of across-site pleiotropies
will require large multisource data resources and computational
techniques to mine them. Many large multisource data resources are
currently under development throughout the United States and the
world (3–9), providing potential opportunities for a new wave of
discoveries. In Utah, an established statewide multisource database
(the Utah Population Database, UPDB) with linked biobank resources
exists. Here, we will describe two different novel family-based
approaches using the UPDB, designed to address heterogeneity and
identify pleiotropies, to illustrate the broad utility of multisource
databases.

Fundamentally necessary to family studies are data for relationship
structure and disease, as well as knowledge of population expectations
of disease. The former is critical for defining phenotypes that cluster in
families and therefore has potential power for genetic discovery. The
UPDB is currently the only statewide resource in theUnited States that
links statewide genealogies (5 million records that span 3–18 genera-
tions) with a statewide Surveillance, Epidemiology, and End Results
(SEER) Program cancer registry [Utah Cancer Registry (UCR), since
1966]. Hence, it allows for both family construction and designation of
significant clustering of disease. Other data sources are also linked to
the UPDB (https://uofuhealth.utah.edu/huntsman/utah-population-
database/data/), including: electronic medical records (1996–present);
historical census data (1880; 1900–1940); vital statistics (1905–
present); residential histories (back to 1900); linkages to environmental
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measures (geographic based); and biobanks. This multisource
database is unique and can be harnessed for many designs to
study cancer risk and survivorship across the lifespan and across
generations (10–14).

Breast cancer is a prime example of a common, complex disease.
Substantial etiologic heterogeneity exists both within and across breast
cancers in high-risk pedigrees. Reducing heterogeneity is an important
design issue in family-based genetic research. For example, evenwithin
high-risk pedigrees, the discovery of BRCA1 and BRCA2 (BRCA1/2)
required restriction to early-onset disease to clarify segregation (15, 16).
It is well-established that gene expression varies across tumors, and
hence tumor expression phenotypes may hold promise for decon-
structing heterogeneity. In breast cancer, tumor gene expression has
been shown to differentiate tumors into intrinsic subtypes (Luminal A,
Luminal B, HER2-enriched, and Basal-like; refs. 17, 18), of which
Basal-like has increased BRCA1 susceptibility (19). The first approach
we describe integrates tumor expression phenotypes with gene map-
ping in high-risk pedigrees. This approach was made possible by
record linkages between genealogy, cancer diagnoses, hospital medical
records, and biobanks, all available via the UPDB. We previously
defined quantitative tumor expression phenotypes associated with
high-risk pedigrees not attributed to BRCA1/2, and illustrated power
for mapping breast cancer loci in one large pedigree (20). Here we
apply the same approach to a second large, high-risk breast cancer
pedigree.

Cancer pleiotropies are a well-accepted phenomenon, and crucial to
genetic counselling for accurate risk predictions. In breast cancer,
pleiotropies are known to vary by the risk gene involved (Fig. 1).
Hence, characterizing families by their patterns of familial cancer risk
could provide new opportunities to identify families with similar
genetic risk factors. Gene mapping focusing on multi-cancer patterns
could also elucidate molecular factors that underlie pleiotropies. For
example, Basal-like breast tumors show more gene expression simi-
larities to high-grade serous ovarian cancer than other breast tumor
types (21, 22). Themultiple linked data sources in the UPDB provide a
platform to describe multi-cancer patterns of familial risk. Further-
more, links to biorepositories could support investigations into the
molecular factors underlying pleiotropies, and links to environmental
data investigations to shared exposures. In the second approach, we
illustrated how data-driven methods make it possible to uncover
familial multi-cancer signatures. We recently introduced this novel
multi-cancer clustering technique and defined four familial multi-

cancer signatures in high-risk bladder cancer families (23). Here, we
focus on multi-cancer signatures for high-risk breast cancer families.

Materials and Methods
The UPDB

The vast majority of individuals residing in Utah are represented in
the UPDB (24–27). Core to the UPDB is an immense genealogy that is
record-linked to many other statewide datasets (including the UCR),
with annual updates. The full genealogic dataset contains nearly 5
million people with 28 million records and the linking of multiple
distinct records for a specific person allows the UPDB to depict the life
history of an individual based on medical and administrative data.
There are currently 336,000 cancer records from the UCR with
diagnoses beginning in 1966 that are linked to the UPDB. The UPDB
is linked to the pathology records of two healthcare systems (Univer-
sity of Utah, Salt Lake City, UT and Intermountain Healthcare, Salt
Lake City, UT) that together serve over 85% of the state, and facilitates
access to over 4 million formalin-fixed, paraffin-embedded (FFPE)
tissue blocks linked to clinical data. It is also linked to external data
repositories using a statewide federated ID, including approximately
85% of outpatient claims in the state of Utah (1996–present).

The data contained in the UPDB may be used for biomedical and
health-related research. It is a rich and unique resource for cancer
research that can support genetic, epidemiologic, public health, and
healthcare delivery studies. Overseeing ethical approvals for use of the
UPDB data for research is the Resource for Genetic and Epidemio-
logical Research (RGE) body, which was established by Executive
Order of the Governor of Utah in 1982. RGE administers access to
UPDB through a formal review process to ensure the protection of
privacy and confidentiality of the persons and data held in UPDB, and
protects the interests of the data contributors (28). A summary list of
data contributors can be found in Supplementary Table S1.

Approach 1: Reducing heterogeneity: Breast cancer gene
mapping using a tumor expression phenotype

Breast cancer pedigrees were identified in the UPDB using record
linkage between the 18-generation genealogy and statewide cancer
records from the UCR. High-risk status was defined as a statistical
excess of breast cancer–compared UPDB internal rates (P < 0.05).
Pedigrees known to be attributable to BRCA1/2 from previous Utah
studies were removed (i.e., screen positive or linked to chromosomes

Figure 1.

Familial multiphenograms for BRCA1
(A) and BRCA2 (B). BR, breast cancer;
CRC, colorectal cancer; FA, Fanconi
anemia; MEL, melanoma; OV, ovarian
cancer; PA, pancreatic cancer; PR,
prostate cancer. Source: https://ghr.
nlm.nih.gov.
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17q21 or 13q13). Record linkage between the UPDB and pathology
records in the University of Utah (Salt Lake City, UT) and Inter-
mountain Healthcare Systems (Salt Lake City, UT) allowed identifi-
cation of pathology records and archived tissue blocks. We pursued
matched tumor and GU FFPE tissues for 25 high-risk pedigrees. GU
refers to tissue that is histologically determined to contain 0% tumor.
In the absence of peripheral blood, DNA extracted fromGU tissue can
be used for germline (inherited) DNA (see Supplementary Materials
and Methods for more detail). Eleven of the 25 pedigrees contained at
least 15 cases for whom tumor blocks were available. These 11
pedigrees were selected for tumor and germline experiments. Tumor
RNA was used for gene expression and GU DNA for germline
genotyping. Tumor gene expression was measured using the PAM50
RT-qPCR research assay (29).We used the OmniExpress high-density
SNP array for germline genotyping. Quality control included: dupli-
cate check, sex check, SNP call-rate (95%), sample call rate (90%), and
failure of Hardy–Weinberg equilibrium (P ≤ 1 � 10�5). All women
were of European ancestry. Ethical approvals for the study were
governed by RGE and Institutional Review Boards (IRB) at the
University of Utah (IRB_00096990; Salt Lake City, UT) and Inter-
mountain Healthcare (IRB_1015580; Salt Lake City, UT).

We previously used a set of population-based breast tumors (30)
and identified five principal components from the 50 PAM50 classifier
genes, referred to as dimensions PC1—PC5 (31). PC3 and PC5 were
shown to be significantly different between the population and the
pedigree tumors and hence potentially powerful phenotypes for gene
mapping in pedigrees. Here we concentrate on high-risk pedigree 1822
(Fig. 2) and dimension PC3 as the phenotype of interest. Tumors in

pedigree 1822 were identified as the most significantly different of all
11 pedigrees to population tumors for PC3 (P ¼ 4.0 � 10�5; ref. 20).
Germline DNA was available for 46 breast cancer cases and tumor
RNA for 31. As described previously (20), we considered breast cancer
cases with tumors in the top decile of PC3 in the population as
“extreme,” resulting in 10 PC3-extreme breast cancer cases for gene
mapping in pedigree 1822.

We used Shared Genomic Segment (SGS) analysis (32), a single-
pedigree method which identifies chromosomal identity-by-state
(IBS) sharing at consecutive SNPs. Segregation from a common
ancestor is implied if the observed IBS sharing is significantly longer
than expected by chance (33, 34). To address any residual heteroge-
neity, sharing evidence is assessed over all possible subsets. Statistical
significance was determined empirically using a gene-drop approach.
Briefly, a gene-drop assigns haplotypes randomly to pedigree founders
under the null hypothesis [i.e., according to a population distribution,
we used 1000Genomes Project (ref. 35) data for our linkage disequi-
libriummodel; ref. 36]. Mendelian segregation and recombination are
simulated through the pedigree structure (37) to generate genotypes for
all pedigreemembers.Weused the establishedRutgers geneticmap (38)
for simulating recombination events. For each simulated configuration
of genotypes in the pedigree, shared segments are assessed and result in
one genome-wide expectation of sharing under the null hypothesis. The
gene-drop procedure was repeated to generate a null distribution of
sharing from which an empirical estimate of significance for the
observed sharing was made. For accurate interpretation, a genome-
wide significance threshold was established, which corrects for the
subsets within the pedigree and the whole-genome framework. After 1

Figure 2.

Pedigree 1822. A, Forty-six breast cancer cases with germline DNA available (colored black). B, Thirty-one breast cancer cases with tumor expression data (colored
green, light/dark blue, purple, or red). Gray color indicates no tumor data. “PC3” indicates caseswhose tumorswere established tobe extreme for PC3.C,The reduced
pedigree structure for 1822 based on the 10 PC3-extreme breast cancer cases. These 10 were the focus of the SGS gene mapping
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million simulations, a gamma distribution was fit to the observed
P values across the genome. The genome-wide significance thresh-
old was derived from this distribution using the theory of large
deviations (39).

Approach 2: Identifying pleiotropic patterns—multi-cancer
signatures for familial breast cancer

High-risk breast cancer families were the focus of the clustering to
identify multi-cancer pleiotropies. Linked genealogic, demographic,
and cancer data from the UPDB were used. First, all individuals with
breast cancer (“probands”) and their first- (FDR), second- (SDR), and
third-degree relatives (TDR) were identified using the UPDB. Only
family members known to reside in Utah for at least 1 year from 1966–
2017 were included. We identified 27,635 probands with at least one
TDR and 1,696,913 family members. Second, this set was reduced to
only families with at least 10 relatives to allow for family risk
assessment. Familial risk for a cancer type was measured using
standardized incidence risk (SIR) ratios accounting for the sex, age,
birth-cohort, and person-years of the pedigreemembers (for a detailed
description of SIR calculations, see Supplementary Materials and
Methods). Person-years were calculated using the minimum of the
first year residing in Utah or 1966 to the year of first cancer diagnosis,
last year of residence in Utah (due to death or migration), or 2017.
Finally, a total of 5,045 families (including 326,024 family members)
were determined as high risk for breast cancer, defined as a statistical
excess of cases compared with the age- and sex-adjusted internal rates
of the UPDB (P < 0.05). These were the basis of our study. This study
was approved by IRBs at the University of Utah (IRB_00088870 and
IRB_00079328).

Each of the 5,045 high-risk breast cancer families were further
characterized by risk for 25 additional cancer types (26 total, including
breast cancer). Other cancers were selected on the basis of SEER site
codes and frequency (see Supplementary Table S2 for detailed infor-
mation; ref. 40).

Two risk metrics were used to capture a family's multi-cancer
signature. First, wSIR, the SIR weighted by the P value. This incor-
porated both the magnitude and significance of the familial risk, and
was calculated using the following equation. This metric allowed us to
include, but down-weight, SIR values that were not significantly
different than the overall population.

wSIRij ¼ SIRij � 1� log pij
� �� �

Where p is the P value, i is the family, and j is the cancer type.
For robustness, and to avoid bias due to large SIRs (especially for

rare cancers), we imposed amaximum value such that anywSIR values
larger than the 90th percentile were set to the 90th percentile value
across all families for the cancer type.

wSIR ¼ wSIRij; if wSIRij � wSIRj90

wSIRj90; otherwise

�

where 90 indicates the 90th percentile for cancer j.
Second, we included a dichotomous indicator of risk (ISIR). Families

were considered to have “high risk” status for a cancer type (ISIR¼ 1) if
the SIR was statistically significant (P < 0.05) and “population risk”
(ISIR ¼ 0) otherwise. As all families were selected to be high risk for
breast cancer by design, we substituted the ISIR for breast with an
indicator variable for male breast cancer. Our final matrix included 52
risk metrics per family (26 wSIR and 26 ISIR).

Clustering was performed on the 5,045� 52 datamatrix (families�
riskmetrics). AGower general coefficient (ade4 Rpackage) was used as

the distance metric for clustering as it allows for the simultaneous use
of our two risk metric types (wSIR continuous and ISIR categorical;
detailed information can be found in the Supplementary Data). We
used partitioning around medoids (PAM or K-medoids clustering
package in R; ref. 41) to measure similarities between the multi-cancer
risk signatures of families. K was selected by running a series of
iterative models from k ¼ 2 to k ¼ 20 and using Silhouette (Supple-
mentary Fig. S1) and elbow plots to identify the point of diminishing
improvement in average Silhouette width.

Bootstrapping was used to evaluate the reproducibility of the
clustering (clustboot function in R) with 200 random draws. Results
from each draw were transformed into a consensus matrix using the
ward linkage algorithm and the (consensusmatrix function in R) and
then plotted in a heatmap used for visualization. The results for k¼ 5
were stable (Supplementary Fig. S2).

Each cluster in the matrix represents a familial multi-cancer con-
figuration (FMC) signature for high-risk breast cancer families. To
describe and compare these clusters (FMCs), we used Cox propor-
tional hazard models to estimate cluster-specific differences in cancer
incidence and their 95% confidence intervals (CI) using the R package
survival. All models controlled for birth year and sex.

Results
Approach 1: Reducing heterogeneity: Breast cancer gene
mapping using a tumor expression phenotype

Figure 2 illustrates pedigree 1822, showing the 46 breast cancer
cases with germline DNA available (Fig. 2A) and the subset of 31 with
tumor expression data (Fig. 2B). Their intrinsic subtype (the usual
purpose of the PAM50) is also indicated for comparison. The 10 PC3-
extreme breast cancer cases used in the SGS analyses are shown in
Fig. 2C. The SGS genome-wide significance threshold for 1822 was
determined to be a ¼ 2.0 � 10�8, and one 0.6 Mb region at chro-
mosome 2q13 surpassed this (P¼ 1.6� 10�8, from113.2 to 113.8Mb).
This segment was shared by eight of the 10 extreme PC3 breast cancer
cases and was inherited through 38 meioses (Fig. 2C). Ten genes are
contained in the 2q13 locus: TTL; POLR1B; CHCHD5; SLC20A1;
NT5DC4; CKAP2L; IL1A; IL1B; IL37; and IL36G.

We explored fine-mapping of the 2q13 locus within the pedigree by
assessing the possibility that the shared haplotype inherited to others.
We defined the eight SGS sharers as “core sharers” and ranked all other
breast cancer cases with genotype data based on their IBS sharing with
them at this locus. We sequentially added these breast cancer cases to
core sharers based on their ranking, and reassessed SGS sharing across
the full set after each addition. Figure 3 shows how the possible sharing
narrows as cases are added. As a post hoc analysis, this cannot be
formally tested for significance, but it indicates there may be an
additional 15 cases who inherit the same 120,567 bp region. This
reduced region contains only NT5DC4, CKAP2L, IL1A, and IL1B.

Approach 2: Identifying pleiotropic patterns—multi-cancer
signatures for familial breast cancer

The 5,045 high-risk breast cancer families in the UPDB ranged in
size from 10 to 284 relatives (FDR, SDR, and TDR). Figure 4 shows the
hazard rate ratios (HRR) for all 5,045 familial breast cancer families
relative to the Utah population and for each familial multi-cancer
configuration (FMC1–5). The clustering algorithm identified five fam-
ily types based on their multi-cancer risks: FMC1 (2,159 families,
42.8%), FMC2 (657, 13.0%), FMC3 (625, 12.4%), FMC4 (1,004, 19.9%),
and FMC5 (600, 11.9%). While, by definition, all clusters contained a
statistical excess of breast cancer, the magnitude of breast cancer risk
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varied across clusters (see Table 1): FMC1 HRR¼ 3.05 (95% CI, 2.98–
3.12), FMC2 HRR¼ 4.32 (4.14–4.50), FMC3 HRR¼ 3.79 (3.64–3.94),
FMC4 HRR ¼ 6.16 (5.96–6.37), and FMC5 HRR ¼ 3.24 (3.12–3.37).

Separating high-risk breast cancer families into clusters with similar
patterns ofmulti-cancer risk uncoveredmany differences in effect sizes
of cancer risks (including opposing directions), and identified previ-
ously undiscovered pleiotropic associations (Table 1; Fig. 4; Supple-
mentary Fig. S3). We found that the risk of ovarian cancer, an
established coaggregation with breast cancer for known risk genes,
varied widely by cluster. Ovarian cancer risk for each of the five FMCs
was significantly different than the risk estimated from all families
together (overall HRR ¼ 1.17; 95% CI, 1.09–1.26; Table 1). FMC5

captured extreme increased risk (HRR ¼ 6.10; 95% CI, 5.64–6.61,
while the remaining four FMCs showed negative associations (signif-
icant decreased risk; Table 1; Fig. 4). Melanoma, another established
cancer associated with breast cancer, was found to vary widely across
clusters (Table 1; Fig. 4). Novel coaggregations were also evident.
There was neither established association for larynx cancer, nor a
signal for risk to larynx cancer when all high-risk breast cancer families
were considered together. However, significant risks (increased and
decreased) were seen for larynx cancer in all five FMCs [e.g., FMC3

HRR ¼ 4.93 (95% CI, 4.58–5.31) and FMC4 HRR ¼ 0.19 (95% CI,
0.14–0.27); Table 1].

Prostate cancer risk was consistent and modest (1.05–1.20) across
all clusters, significantly elevated in four of the FMCs, and borderline in
the fifth. Some cancers were consistently absent: bladder, brain, cranial
nerves and other nervous system (central nervous system), myeloma,
and small intestine. The remaining cancers provided patterns that
differentiated FMCs. Families in FMC1 were at moderately increased
risk for prostate cancer and acute lymphocytic leukemia (ALL) and
had decreased risk for 11 cancers (Fig. 4; Table 1), with notable
decreases in ovarian (HRR ¼ 0.19; 95% CI, 0.15–0.24) and cancer of
the larynx (HRR ¼ 0.41; 95% CI, 0.37–0.46). The FMC2 cluster alone
showed strong coaggregation of melanoma (HRR ¼ 4.17; 95% CI,
3.95–4.40) and moderate increases in risk for cancers that are usually
seen in adolescents, such as testicular, thyroid, non-Hodgkin lym-
phoma, acute lymphocytic leukemia, and acute myeloid leukemia
(Fig. 4; Table 1). This cluster had increased risk for eight cancer sites,
the highest of the FMCs, and decreased risk for two sites, the lowest of
the FMCs. FMC3 was the only cluster to exhibit substantial and
significant risk for cancer of the larynx (HRR ¼ 4.93; 95% CI,
4.58–5.31) and Hodgkin lymphoma (HRR ¼ 1.53; 95% CI, 1.15–
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Figure 3.

The left-hand side y-axis indicates the number of individuals sharing. From the established 8 “core sharers,” individuals are added, thus the range is 9 to 46 individuals
(total cases with DNA). The right-hand side y-axis indicates the number of meioses separating the set of sharers on each row. The x-axis indicates the SNP markers
across 2q13. Each horizontal rectangle is a shared segment, with the color indicating the P value for the segment (green, highly significant, to red, not significant). The
number in the white box on the green rectangles indicates the number of simulations more extreme than the observed segment. At 23 sharers (15 additional to the
core 8), significance disappears and returns to that expected.
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2.04). Families in FMC4 had an increased risk of uterine cancer
(HRR ¼ 1.39; 95% CI, 1.22–1.57), and the lowest risk of cancer of the
larynx (HRR ¼ 0.19; 95% CI, 0.14–0.27) and ovary (HRR ¼ 0.17; 95%
CI, 0.11–0.28). Finally, the FMC5 cluster was the only to capture strong
coaggregation with ovarian cancer (HRR ¼ 6.10; 95% CI, 5.64–6.61).

Discussion
Largemultisource database resources are being developed in several

healthcare systems across the United States and country-wide initia-
tives are becoming more common across the world (42–44). Each of
these immense resources has its particular strength and together these
resources hold the potential for paradigm-shifting opportunities in
Population Science research. However, these will only be realized with
consummate advances in computational approaches to interrogate the
data. In Utah, a strength of the UPDB is an immense genealogy linked
to a statewide health data. Here, we have described two different novel
approaches that focus on high-risk pedigrees to understand and
address etiologic heterogeneity and define pleiotropic patterns. Both
rely on the UPDB to provide the necessary linked databases of
genealogy, cancer data, demographic, and medical/clinical informa-
tion. These data are available on nearly the entire population of Utah
starting with the original European settlers of Utah in the 1800s (the
earliest records) and extending to current residents of the state (where
all sources of records are represented). The UPDB is a dynamic
resource that continues to expand as the population grows and as
linked data sources develop. For example, a recent SEER-funded pilot
project by theUCR illustrated a 73.6% success rate for identifying FFPE

tumor blocks for breast cancers diagnosed from 2000 to 2015 across
the state. Such streamlining of tumor acquisition by the UCR would
further benefit UPDB studies.

The techniques and findings here rely on a large multisource
population database and cannot easily be replicated. However, the
Statistics Sweden Multigeneration Register, which has been used
extensively to identify familial associations between concordant and
discordant cancers (45, 46), is one of the potential data source that can
be used to test the reproducibility of our findings. Notably, previous
genetic discoveries using UPDB have proven generalizable, such as for
breast cancer (BRCA1/BRCA2), neurofibromatosis type I (NF1), famil-
ial adenomatous polyposis coli (APC), and melanoma (CDKN2A).
Once other large databases become ready, the methods described here
may enable and accelerate the path to discovery elsewhere. Conversely,
our methods also have the potential to be broadened, for example, to
explore genetic pleiotropy through multiple primaries (22, 47).

InApproach 1, we highlighted a strategy for reducing heterogeneity,
and utilized a novel tumor expression phenotype, PC3, previously
shown to be increased in high-risk pedigrees in the UPDB (20). We
performed gene mapping in a large high-risk pedigree that contained
an unusual number of breast cancer cases whose tumors were extreme
for PC3. Using SGS, a method specifically designed for identifying
segregating haplotypes in very large families (32, 34), we identified a
0.6Mbgenome-wide significant segment in pedigree 1822 at 2q13 (P¼
1.6 � 10�8, LOD equivalent 6.64). A post hoc search for additional
carriers (not restricted to those with tumor data) indicates the region
may only be 120 kb. Only 4 genes are contained in the smaller region,
and of particular interest are IL1A and IL1B. ILs are key regulators of

Figure 4.

Familial multiphenograms illustrating the patterns of familial cancer risk across the five high-risk FMCs. The “Overall” column shows the fold difference in risk for all
familial breast cancer families relative to the control population. The x-axis is truncated at 2.5, and values larger than 2.5 are noted within the horizontal bars on the
chart. Columns FMC1–FMC5 show the unique familial cancer patterns by FMC. These patterns differ significantly from one another and the overall pattern of cancer
clustering in familial breast cancer families. NHL, non-Hodgkin lymphoma.
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inflammation and immune response with roles in cell growth, angio-
genesis, and regulation of inflammatory process, and therefore strong
candidate genes for breast cancer risk and mortality. In case–control
studies, IL1BSNPshavebeenassociatedwithbreast cancer risk (48, 49).
IL1B has also been studied as a candidate for metastatic progression,
particularly with respect to invasiveness and the epithelial–
mesenchymal transition (50–56), as well as resistance to therapy (57).
IL1A has been shown to play a role in chronic inflammation driving
tumorigenesis and chemotherapy resistance (58). With these compel-
ling candidates, the natural next step will be to sequence the shared
haplotype for functional variants.

In Approach 2, we highlighted the ability to identify pleiotropies
and described five FMCs for high-risk breast cancer families. This
novel, network-inspired approach simultaneously considered risk
of multiple cancer types to classify families into clusters with similar
patterns of familial cancer risk. Several cancer types that have
previously been shown to coaggregate with breast cancer were
identified in the signatures of our agnostic clustering approach
(prostate, ovary, uterine, and melanoma; refs. 59–61). However, we
show that these risks may vary widely across clusters (ovarian and
melanoma, in particular). New coaggregations were also identified.
Notably, risk for larynx cancer (FMC3 HRR¼ 4.93) and lymphomas
(FMC3 Hodgkin HRR ¼ 1.53 and FMC2 ALL HRR ¼ 1.57). These
findings improve resolution and our understanding of cancer family
risks and have potential implications for screening and prevention.
Also, while it is common for familial studies to focus only on
increased risk, we also considered cancers with decreased risk.

Isolating patterns of extreme decrease in risk, such as the multiple
cancers at decreased risk in FMC1, could aid in the discovery of
etiologic factors that have opposing pleiotropic effects (i.e., a genetic
mutation that increases risk for one cancer but is protective for
others) or are single cause–single phenotype relationships. Another
interesting pattern that may provide avenues to better understand
etiology was identified in FMC2, which showed increased risk for
several cancers often seen in adolescent and young adults. Other
studies have shown similar clustering patterns: Hodgkin lymphoma
and other lymphoid neoplasms; (10, 62–64), testicular and non-
Hodgkin lymphoma (65); and testicular, breast, and melanoma (66).
Our multi-cancer signatures of risk have the potential to improve
characterization of different subtypes of breast cancer and provide
new avenues to explore common etiologic pathways including
gene–environment factors. Subtypes provide the potential to reduce
heterogeneity and increase power. The method could also be
extended to noncancer phenotypes that may have an underlying
genetic link to cancer, such as Parkinson disease (60). Cancer is a
complex phenotype and by embracing large multisource databases
and computational tools, such as machine learning, it will be
possible to seek out important combinations, beyond individual
factors, to further our knowledge of the disease.

The goal of both approaches was to increase homogeneity to
improve genetic studies, the first by defining cases within a pedigree
that are similar and second by selecting groups of pedigrees that are
similar (and indicative of genetics, rather than environment). It is
important to note that findings from both approaches are sensitive

Table 1. The HRR of cancer diagnosis by cancer site. Results are displayed for all familial breast cancer families (N¼ 5,045) combined
and by FMC.

Overall FMC1 FMC2 FMC3 FMC4 FMC5

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Breast 3.64 (3.57–3.70) 3.05 (2.98–3.12) 4.32 (4.14–4.50) 3.79 (3.64–3.94) 6.16 (5.96–6.37) 3.24 (3.12–3.37)
Ovary 1.17 (1.09–1.26) 0.19 (0.15–0.24) 0.61 (0.46–0.82) 0.72 (0.57–0.92) 0.17 (0.11–0.28) 6.10 (5.64–6.61)
Larynx 0.99 (0.93–1.05) 0.41 (0.37–0.46) 0.69 (0.56–0.85) 4.93 (4.58–5.31) 0.19 (0.14–0.27) 0.75 (0.64–0.88)
Melanoma of the skin 1.09 (1.05–1.13) 0.76 (0.72–0.80) 4.17 (3.95–4.40) 0.83 (0.75–0.92) 0.59 (0.53–0.67) 0.94 (0.86–1.02)
Prostate 1.09 (1.06–1.11) 1.07 (1.03–1.10) 1.08 (1.01–1.16) 1.05 (0.99–1.12) 1.20 (1.13–1.27) 1.11 (1.05–1.17)
Acute myeloid leukemia 1.00 (0.91–1.10) 0.87 (0.77–0.99) 1.30 (1.02–1.65) 0.97 (0.75–1.24) 1.34 (1.08–1.65) 1.00 (0.80–1.24)
Acute lymphocytic leukemia 1.06 (0.97–1.15) 1.14 (1.02–1.27) 1.57 (1.28–1.93) 0.85 (0.66–1.09) 0.92 (0.73–1.17) 0.74 (0.58–0.94)
Hodgkin—nodal 1.04 (0.91–1.19) 0.95 (0.79–1.14) 1.20 (0.83–1.72) 1.53 (1.15–2.04) 1.14 (0.83–1.57) 0.75 (0.51–1.08)
NHL—nodal 1.06 (1.00–1.11) 1.05 (0.98–1.12) 1.20 (1.05–1.39) 0.91 (0.79–1.05) 1.20 (1.06–1.36) 0.98 (0.87–1.11)
Colon 1.00 (0.97–1.03) 0.96 (0.91–1.00) 1.06 (0.96–1.16) 1.02 (0.93–1.11) 1.10 (1.01–1.20) 1.03 (0.95–1.11)
Thyroid 1.01 (0.95–1.07) 1.03 (0.95–1.12) 1.23 (1.04–1.45) 0.78 (0.65–0.94) 0.93 (0.79–1.10) 1.04 (0.89–1.20)
Cervical 0.80 (0.74–0.86) 0.76 (0.69–0.84) 0.98 (0.80–1.19) 1.02 (0.86–1.21) 0.84 (0.70–1.01) 0.60 (0.49–0.74)
Uterine 1.11 (1.05–1.17) 1.05 (0.97–1.12) 1.08 (0.93–1.27) 1.17 (1.02–1.34) 1.39 (1.22–1.57) 1.06 (0.93–1.20)
Lung and bronchus 0.84 (0.80–0.88) 0.77 (0.72–0.82) 0.92 (0.81–1.05) 1.06 (0.95–1.18) 0.94 (0.84–1.06) 0.77 (0.68–0.86)
Stomach 0.92 (0.84–1.01) 0.87 (0.76–0.98) 1.25 (0.99–1.58) 0.92 (0.73–1.17) 0.98 (0.78–1.24) 0.87 (0.70–1.08)
Soft tissue including heart 1.02 (0.90–1.15) 1.03 (0.87–1.21) 1.31 (0.94–1.81) 1.03 (0.75–1.43) 1.14 (0.84–1.55) 0.69 (0.48–0.98)
Kidney and renal pelvis 0.89 (0.83–0.96) 0.83 (0.75–0.91) 0.99 (0.80–1.22) 1.00 (0.83–1.20) 0.87 (0.72–1.06) 0.97 (0.82–1.15)
Testis 1.05 (0.92–1.19) 1.00 (0.84–1.20) 1.55 (1.13–2.12) 1.04 (0.74–1.47) 1.09 (0.79–1.50) 0.80 (0.56–1.15)
Pancreas 1.04 (0.97–1.11) 0.98 (0.89–1.07) 1.12 (0.93–1.36) 1.06 (0.89–1.26) 1.24 (1.05–1.46) 1.03 (0.88–1.21)
Esophagus 0.88 (0.77–1.01) 0.74 (0.61–0.90) 0.79 (0.51–1.21) 1.16 (0.85–1.60) 1.31 (0.98–1.76) 0.84 (0.60–1.16)
Liver 0.83 (0.71–0.96) 0.68 (0.55–0.85) 0.58 (0.34–1.01) 0.89 (0.60–1.32) 1.14 (0.81–1.61) 1.17 (0.85–1.59)
Brain 0.98 (0.90–1.06) 0.90 (0.80–1.02) 1.13 (0.89–1.43) 1.01 (0.81–1.25) 1.03 (0.83–1.27) 1.05 (0.86–1.27)
CNS 0.94 (0.86–1.03) 0.89 (0.79–1.01) 0.92 (0.70–1.21) 1.05 (0.84–1.32) 0.99 (0.79–1.25) 1.00 (0.81–1.24)
Myeloma 1.03 (0.95–1.13) 0.98 (0.87–1.10) 1.26 (0.99–1.60) 1.08 (0.86–1.36) 1.07 (0.85–1.34) 1.02 (0.83–1.26)
Small intestine 1.01 (0.87–1.17) 0.97 (0.79–1.19) 1.22 (0.82–1.83) 0.97 (0.65–1.45) 0.95 (0.63–1.42) 1.07 (0.75–1.51)
Urinary bladder 0.99 (0.94–1.04) 0.96 (0.90–1.03) 1.04 (0.90–1.22) 1.02 (0.89–1.17) 1.05 (0.92–1.20) 0.94 (0.83–1.07)

Note: The overall estimates and 95% CIs are displayed in column 2. The FMC configuration (FMC1–5)–specific HRRs are reported in columns 3–7.
Abbreviations: CNS, cranial nerves, other nervous system; NHL, non-Hodgkin lymphoma.
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to parameters of the methods. In Approach 1, the phenotype used to
select cases is critical to power (extreme-PC3, previously shown to
cluster in pedigrees). Without restriction, there is no signal at 2q13, or
elsewhere in the genome. We note that sharing in the eight cases in
1822 (P ¼ 1.6 � 10�8) compares in significance with the best single-
BRCA1 pedigree published (equivalent P¼ 6.2� 10�8; ref. 67) or best
BRCA2 pedigree (P ¼ 1.8 � 10�5; ref. 2). In Approach 2, as with all
clustering techniques, the clusters are sensitive to the distance metrics
and weighing scheme used. This is important to consider when
interpreting findings. To improve authenticity and generalizability
and reduce spurious patterns, these parameters can be grounded with
domain-specific knowledge or logical theories.

Large, population-based, multi-faceted databases, such as the
UPDB, represent a new era for Population Sciences. Together with
novel approaches, such as we have described here, these will play a
critical role in advancing knowledge of cancer risk, elucidating the
interplay between factors at the molecular level to individual interac-
tions with the environment, and determine how these factors vary
between people. Datasets that link family structure will also allow for
important questions about the transgenerational nature of disease.We
have illustrated that tumor phenotypes identified using high-risk
status can map genes for breast cancer, and that various different
cancer pleiotropies exist in high-risk breast cancer pedigrees. These
types of discoveries will offer new avenues for defining germline
susceptibilities, cancer prevention, andmulti-cancer riskmanagement.
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